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Abstract 
 

Today's manufacturing systems are often too inflexible and not sufficiently adaptable 
to rapidly changing environments with unpredictable and abrupt fluctuation in product 
demands or manufacturing downtimes. Moreover, such systems suffer from the weak 
covering and exchange of the information and knowledge between enterprise levels.  

Since the assembly participates with high percentage in the cost of manufacturing a 
product and since the automation rate in this domain is very low, this is where the most 
benefits can be gained by applying more flexible manufacturing paradigms. This dissertation 
intends to develop innovative, agile control architecture to face the current requirements 
imposed to the manufacturing enterprises in the assembly domain. Having their own problem-
solving capabilities and ability to interact in order to reach an overall goal, the autonomous 
agents are considered as a promising approach to provide a suitable paradigm for designing 
intelligent manufacturing systems to enhance flexibility and agility. We propose a knowledge-
intensive multi-agent architecture that enables ontology-based communication and 
cooperation among a set of autonomous and heterogeneous agents. An agent, the main core of 
our architecture, acts based on his knowledge, by sensing the manufacturing environment, 
triggering the reasoning process, which selects the proper actions to be executed and that will 
affect the manufacturing environment. Each agent has knowledge about his domain of 
application, about strategies, which can be used to achieve a specific goal, and knowledge 
about the (other) agents involved in the system. The agent is a representation of a 
manufacturing component that can be either a physical resource (numerical control machine, 
robot, pallet, etc.) or a logic entity (order, supply, etc.).  

Having a shared ontology is critical for successful communication between agents, 
since such a shared ontology provides the common agreement and understanding about the 
concepts used. This offers the possibility for solving inter-operability problems. Therefore, 
the ontology will be shared among agents and will serve as the instrument to define the 
vocabulary used by the agents during their interactions, and to support “understanding” of the 
message content in the sense of its correct interpretation. In particular, the essential 
knowledge about the domain will be made available to the agents through an ontology. 
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Kurzfassung 
 

Heutige Fertigungssysteme reagieren häufig zu inflexibel und unausreichend 
anpassungsfähig an die schnell ändernden Produktanforderungen mit unvorhersehbarer und 
plötzlicher Fluktuation sowie an die Produktionsstillstandzeiten. Außerdem leiden solche 
Systeme öfters unter einer schwachen Informations- und Wissensversorgung sowie unter 
schwachen Informationen- und Wissensaustausch zwischen verschiedenen 
Unternehmensbereichen.  

Aufgrund dessen dass die Montage einen hohen Anteil an den 
Produktherstellungskosten hat und die Automatisierungsrate in diesem Arbeitsfeld sehr 
niedrig ist, führt die Anwendung flexiblerer Produktionsparadigma in dieser Domäne zu 
größten Nutzen. Das Ziel dieser Dissertation ist die Entwicklung einer innovativen, agilen 
Steuerungsarchitektur um die gegenwärtigen Anforderungen, die die Montage einem 
Produktionsunternehmen auferlegt, zu begegnen. Um ein gemeinsames Ziel zu erreichen, 
können autonome Agenten Probleme lösen und miteinander kommunizieren. Mit dieser 
Fähigkeit bieten sie einen viel versprechenden Ansatz zur Entwicklung passender Paradigma 
für das Design intelligenter Fertigungssysteme und zur Steigerung derer Flexibilität und 
Agilität. Unser Ansatz ist die Entwicklung einer wissensintensiven Multi-Agent Architektur, 
welche die ontologiebasierte Kommunikation und Kooperation zwischen autonomen und 
heterogenen Agenten ermöglicht. Ein Agent, das Kernstück unserer Architektur, agiert 
basierend auf seinem Wissen, indem er das Produktionsumfeld und -Bedingungen analysiert 
und den Schlussfolgerungs-Prozess auslöst. Dadurch wird die entsprechende Aktion 
ausgewählt, welche in ihrer Ausführung wiederum das Produktionsumfeld und bzw. 
Produktionsbedingungen beeinflusst. Jeder Agent verfügt über das Wissen über sein 
Anwendungsgebiet, über Strategien, die verwendet werden können um ein spezifisches Ziel 
zu erreichen, sowie über die im System beteiligten Agenten. Der Agent repräsentiert die 
Produktionskomponente, die entweder ein physikalisches Ressource (numerisches 
Steuerungsmaschine, Roboter, Ladeplatte, usw.) oder eine logische Einheit (Auftrag, 
Zulieferung, usw.) sein kann.  

Eine mitbenutzte Ontologie ist entscheidend für eine erfolgreiche Kommunikation 
zwischen den Agenten, da sie ein gemeinsames Agreement und Verständigung über die 
verwendeten Konzepte liefert. Dies bietet die Möglichkeit die Interoperabilitätsproblemen zu 
lösen. Folglich, dient eine von Agenten gemeinsam benutzte Ontologie als Instrument dafür 
ein von Agenten, während ihrer Interaktionen verwendetes Vokabular zu definieren und „das 
Verstehen“ des Nachrichteninhalts im Sinne einer korrekten Interpretation zu unterstutzen. 
Insbesondere, das wesentliche Domänewissen wird den Agenten durch die Ontologie 
zugänglich gemacht. 



 iii

Dedication 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Dedicated to the memory of Professor Bernard Favre-Bulle 



 iv

Acknowledgements 

 
At the beginning, I would like to acknowledge the contributions of a large number of 

people, who in different ways have provided invaluable support for the completion of this 
thesis.  

Most of all I would like to thank my first supervisor Professor Bernard Favre-Bulle, 
the professor, manager and samurai that embodied the best characteristics of all these 
professions. He was the motivator and spiritual mentor for my work, suffering me with the 
question “How is that better?”, but helping me also when I needed help the most. I wish I had 
more chance to learn from him. Arigato gozaimasu Professor Favre.  

I gratefully acknowledge the help of Professor Gerfried Zeichen, who overtook in 
difficult circumstances the hard role of my first supervisor, giving me many insightful 
suggestions that enhance the overall quality of this thesis. 

I have been more than privileged to have Professor Vladimír Mařík from the Czech 
Technical University as my co-supervisor who provided me valuable feedback concerning 
this thesis. 

This dissertation would not have been possible without my colleague Gottfried 
Koppensteiner, who spent countless amounts of time and energy forcing the system to 
function properly. He shared with me the same excitement when the agents behaved 
appropriate and when I succeeded to drive snowboard 5 meters without a fall.  

I would like to thank Dr. Alois Zoitl, Ingo Hegny, Christoph Ebm and other colleagues 
at the Automation and Control Institute for their encouragement, discussions and suggestions 
particularly in the field of Low-level control. Especially I would like to express my thanks to 
Wilfried Lepuschitz for many valuable comments on earlier drafts of this thesis. 

I have to express my sincere gratitude to Dr. Pavel Vrba from Rockwell Automation, 
on whom I could always count on, for extremely qualified supervision, advices and critics on 
the style and content of this thesis. Thank you for the inspiration and for proving that the best 
multi-agent system is really – an implemented one.  

Furthermore, I would like to thank Professor Stefan Biffl, Thomas Moser and Dr. 
Dindin Wahyudin from the Institute of Software Technology & Interactive Systems for 
working with me on distributed dynamic scheduling and the analysis of a range of workflow 
scheduling strategies based on multi-agent negotiation.  

I am also grateful to Dr. Vedran Kordic and Dr. Edin Arnautovic for various scientific 
and technical debates as well as discussions about life in general we have had. 

Significant contributions were provided by my students Lisa Vittori, Erhard List, 
Gabriel Weidenhausen, Stephan Auer and Benjamin Grössing, to whom I would like to 
express my heartfelt appreciation. 

Finally, many warm thanks go to my family who provided constant and munificent 
encouragement. Thank you for supporting me during all these years and for pursuing me to 
finish this thesis as soon as possible. “Yes mother, one of my next serious projects will be 
marriage!” 

This research was financed by the Austrian Science Fund (FWF), Projects No. 
FWFP19644-N13. 



 v

Content 
 
Abstract ...................................................................................................................................... i 
Kurzfassung .............................................................................................................................. ii 
Acknowledgement....................................................................................................................iii 
Dedication ................................................................................................................................ iv 
Glossary of Symbols and Abbreviations ................................................................................ vii 
1. Introduction ......................................................................................................................... 1 

1.1 Background and Motivation............................................................................................ 1 
1.2 Approach ......................................................................................................................... 2 
1.3 Application ...................................................................................................................... 3 
1.4 Objective ......................................................................................................................... 4 
1.5 Methodology ................................................................................................................... 4 
1.6 Thesis Outlines................................................................................................................ 6 

2. State of the Art..................................................................................................................... 8 
2.1 Introduction to manufacturing systems ........................................................................... 8 
2.2 Manufacturing Control .................................................................................................... 9 
      2.2.1 Multi-agent Systems............................................................................................. 11 
      2.2.2 High-level Control................................................................................................ 14 
      2.2.3 Low-level Control ................................................................................................ 19 
      2.2.4 Weaknesses and Challenges of Agent-based Control Systems............................ 22 
      2.2.5 Semantic Systems................................................................................................. 24 
      2.2.6 Knowledge Representation .................................................................................. 26 
2.3 Planning and Scheduling............................................................................................... 28 
      2.3.1 Planning................................................................................................................ 28 
      2.3.2 Application of Agents in Process Planning.......................................................... 30 
      2.3.3 Planning and Scheduling in the Assembly Domain ............................................. 31 
      2.3.4 Production Scheduling ......................................................................................... 34 
      2.3.5 Integration of Process Planning and Scheduling.................................................. 36 

3. The KASA Environment .................................................................................................. 39 
3.1 Introduction .................................................................................................................. 39 
3.2 A Manufacturing System .............................................................................................. 41 
3.3 Layered Manufacturing System Architecture ............................................................... 42 
3.4 The Multi-agent System................................................................................................ 44 
      3.4.1 Testbed ................................................................................................................. 46 
      3.4.2 Introduction of new Orders .................................................................................. 50 
      3.4.3 The Ontology........................................................................................................ 52 
3.5 Agent architecture ......................................................................................................... 55 
      3.5.1 The HLC Architecture.......................................................................................... 56 
      3.5.2 The Low Level Control ........................................................................................ 58 
      3.5.3 Communication Interface between Agents and the Low Level Control .............. 59 
3.6 Implementation.............................................................................................................. 61 



 vi

3.7 Summary ....................................................................................................................... 61 
4. Dynamic Scheduling in the KASA ................................................................................... 62 

4.1 Introduction to Dynamic Scheduling ............................................................................ 62 
4.2 Task Scheduling ............................................................................................................ 63 
      4.2.1 Task allocation ..................................................................................................... 63 
      4.2.2 Task sequencing ................................................................................................... 64 
      4.2.3 Simulation approach............................................................................................. 64 
      4.2.4 Simulation Results................................................................................................ 65 
4.3 Task Scheduling Considering Transportation Times and Conveyor Failures............... 67 
      4.3.1 Task allocation and sequencing............................................................................ 67 
      4.3.2 Simulation approach............................................................................................. 68 
      4.3.3 Simulation Results................................................................................................ 69 
4.4 Re-Scheduling Using Machine Failure Handling Policies............................................ 71 
      4.4.1 Re-scheduling Policies ......................................................................................... 72 
      4.4.2 Research Issues .................................................................................................... 74 
      4.4.2 Simulation Approach............................................................................................ 75 
      4.4.3 Experimental Results and Discussion .................................................................. 75 
4.5 Summary ....................................................................................................................... 79 

5 Failure Tolerance in the KASA......................................................................................... 80 
5.1 Introduction to Failure Tolerance.................................................................................. 80 
5.2 Failure Types................................................................................................................. 81 
5.3 The Failure Handling Concept ...................................................................................... 83 
5.4 Implementation.............................................................................................................. 84 
5.5 Reconfiguration Abilities of the KASA........................................................................ 87 
      5.5.1 Simulation Approach............................................................................................ 89 
      5.5.2 Simulation Results and Discussion ...................................................................... 90 
5.6 Summary ....................................................................................................................... 91 

6. Simulation of the KASA Environment............................................................................ 92 
6.1 Introduction ................................................................................................................... 92 
6.2 Tools.............................................................................................................................. 92 
6.3 System Integration......................................................................................................... 94 
6.4 MAST Simulation ......................................................................................................... 97 
6.5 Summary ....................................................................................................................... 97 

7. Conclusion.......................................................................................................................... 98 
8. Bibliography .................................................................................................................... 101 
Appendix .............................................................................................................................. 113 

A Rules.............................................................................................................................. 113 
B Publications ................................................................................................................... 118 

 



 vii

Glossary of Symbols and Abbreviations 
 
ACIN   : Automation and Control Institute. 
ACL   : Agent Communication Language. 
AI   : Artificial Intelligence. 
AR    : Agenda Rerouting. 
CA    : Contact Agent. 
CAPP   : Computer-Aided Process Planning. 
CDA    : Change-Direction-Algorithm. 
CFP    : Call for Proposal. 
CIM   : Computer Integrated Manufacturing. 
CNP   : Contract Net Protocol. 
CR    : Critical Ratio. 
CR policy   : Complete Rerouting Policy. 
CRT    : Critical Ratio + Transportation Time. 
DCOM   : Distributed Component Object Model. 
DF  : Directory Facilitator Agent. 
DL    : Description Logic. 
EDD    : Earliest Due Date. 
ERP   : Enterprise Resource Planning. 
FB    : Function Block. 
FBA    : Function Block Adapters. 
FCFS    : First Come, First Served. 
FIPA   : Foundations for Intelligent Physical Agents. 
GA    : Genetic Algorithm. 
HB    : Heartbeat. 
HLC   : High Level Control. 
HLF   : High-Level-Failure. 
JADE    : Java Agent Development Environment. 
JESS   : Java Expert System Shell. 
KASA  : Knowledge-based Multi-Agent System Architecture. 
KQML  : Knowledge Query and Manipulation Language. 
LLC   : Low Level Control. 
LLF   : Low-Level-Failure. 
MA    : Machine Agent. 
MAS  : Multi-Agent System. 
MAST   : Manufacturing Agent Simulation Tool. 
NR   : New Jobs Rerouting. 
OA    : Order Agent. 
OWL    : Ontology Web Language. 
PA    : Pallet Agent. 
PLC    : Programmable Logic Controller. 
PP    : Process planning. 



 viii

RA   : Rockwell Automation. 
RDF    : Resource Description Framework. 
RDFS   : Resource Description Framework Schema. 
RMA    : Remote Management Agent. 
RS   : Right-shift Scheduling. 
RT    : Real-time. 
RT-UML : Real-time Unified Modeling Language. 
SA    : Supply Agent. 
SIFB    : Service Interface Function Blocks. 
SPA    : Shortest Path Algorithm. 
SPT    : Shortest Processing + Transportation Time. 
SP    : Shortest Processing Time. 
TMS    : Test Management System. 
XML    : eXtensible Markup Language. 



CHAPTER 1. INTRODUCTION  1 

 

1. Introduction 
 

“Knowledge is of two kinds: we know a subject ourselves, 
or we know where we can find information upon it.” 

Samuel Johnson 
 
1.1 Background and Motivation 
 

The manufacturing sector, faced with the growth in the variety of products and at the 
same time with a decreasing product life cycle, is forced by global competition to produce 
customized products in a short time at low price. It has to be capable to effectively react to 
sudden changes in customer demands, as well as to cope with unpredictable events such as 
failures and disruptions. However, the current manufacturing control systems, due to their 
centralized and hierarchical structure, respond weakly to the emerging challenges faced by 
new technological developments and market demands. Such systems don’t have the ability to 
economically handle manufacturing of several products and variants with small lot sizes. 
They also have a limited capability for agile adaptation to unexpected internal and external 
disturbances. The lack of flexibility and adaptability of such systems in situations when 
particular resources become overloaded or unavailable directly influence the system 
effectiveness. This is particularly caused by a need to switch parts of the system off-line and 
recalculate previous plans and schedules according to the new system configurations, causing 
the loss of time and delays in production.  

Moreover the applied control systems, usually consisted of heterogonous units which 
are using different type of data and data structures, are not capable to ensure the uninterrupted 
flow of information between and sometimes through the controlled levels. The applied 
methodologies in these systems are based on disconnected ordering, scheduling as well as 
execution processes and lack agility needed for enterprise-wide integration. The process 
planning is usually separated from scheduling as well as control activities and unnecessary 
breaks between implicated systems are created, even though the outputs and data from one 
application could be fluently used as inputs for another one. The committee on Visionary 
Manufacturing Challenges identifies the information and knowledge that covers and is 
exchanged between enterprise levels including the shop floor to be one of major challenges 
that need to be addressed when manufacturing companies progress from the current status to 
manufacturing in 2020 [Vis98].  

In order to cope with the shortcomings mentioned above the new agile, more flexible 
and robust manufacturing paradigm, capable to handle ongoing changes in a manufacturing 
environment, changing rapidly system configuration and maintaining efficiency at the same 
time, is required. The paradigm has to be able to dynamically optimize a production schedule 
considering system capacity and time constraints. The concept should also support 
interoperability and reduce time and costs for getting high-quality and accurate knowledge 
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through its information systems. Moreover, the concept has to be capable to integrate the 
product and manufacturing system life cycle giving them a unified and understandable form.  

 
1.2 Approach 

 
It has been generally acknowledged that the multi-agent system (MAS) approach 

offers a convenient way of modeling processes and systems that are distributed over space 
and time, making the control of the system decentralized, thereby reducing the complexity, 
increasing flexibility and robustness and enhancing adaptability to uncertainty and 
disturbances such as machine failures, frequent changes in the shop floor layout and the 
control system, etc [Bus04, She99, Vrb08]. MAS are composed of distributed heterogeneous 
units/agents, where each agent manages its own activities on the basis of its local state and the 
information received in messages from other agents or alternatively from human users (plant 
operators). 

We propose a Knowledge-based Multi-Agent System Architecture (KASA) that 
enables ontology-based communication and cooperation among a set of autonomous and 
heterogeneous units/agents. An agent, the core component of our architecture, acts on the 
basis of his knowledge and by sensing the manufacturing environment. This triggers the 
reasoning process, by which the agent selects proper actions to be executed that subsequently 
influence the manufacturing environment. Having its own objectives, knowledge and skills, 
each agent has the capability to reason in order to take decisions about its activities. It is 
envisaged that adopting this control approach to manufacturing systems would improve 
agility as well as reusability and reduce the development costs. 

The crucial element in the decision component is the rule-based system, which applies 
declarative knowledge, expressed in a set of rules to regulate the agent’s behavior. Agents 
communicate and negotiate with each other in order to perform the operations based on the 
available local information or to solve possible conflicts. The inter-agent communication 
capability provides the essential means for the collaboration of the agents. In order to ensure 
the correct understanding of the exchanged messages, all agents must have the same 
representation of the environment, or at least that part of the shared environment about which 
they are exchanging information with each other. Ontologies are of a vital importance for 
enabling knowledge interoperations between agents and at the same time a fluent flow for the 
different data from different entities. 

In the proposed multi-agent system, each agent is an autonomous semantic entity 
responsible for the maintenance of the local data described in its knowledge base. Each agent 
is a representation of a manufacturing component that can be either a physical resource 
(numerical control machine, robot, pallet, etc.) or a logic entity (order, supply, etc.). In 
contrary to traditional manufacturing scheduling systems that are using centralized 
scheduling, the proposed agent-based manufacturing scheduling system supports distributed 
scheduling. Each agent can handle the schedule of its machine, operator, robot or station 
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locally. In addition, this system optimizes machine utilization and provides a platform to 
enable the reconfiguration of manufacturing systems. 

The major advantage of the proposed architecture is that using the ontology driven 
solution in combination with intelligent agents offers a direction towards solving the inter-
operability problems within the manufacturing life cycle as well as between software 
applications, such as process planning, process modeling, scheduling, workflow and 
simulation. The proposed system automates the generation of process plans such that 
functions as for instance task selection, shortest route determination, etc. can be performed 
automatically through cooperation and coordination between autonomous agents without 
involving the central unit. Furthermore, the advantage of the presented concept is that in this 
knowledge-based system there is no need to define how a problem has to be solved (i.e. which 
detail actions have to be taken), instead the problem and the goals to be reached have to be 
described. The system then chooses on its own how to reach the goal. 
Additional advantages of this approach are: 

- Adaptation to disturbances - the agile response to unexpected manufacturing 
disturbances,   

- Re-use of knowledge, know-how and components, simplification of the solution 
development, 

- Addition of new components and knowledge, by avoiding re-design, re-programming 
and re-initialization of the other components, 

- High degree of flexibility, modularity and reusability of hardware and software 
components, 

- Generation of production tasks based on ontologies, 
- Introduction of new products does not require significant time and efforts for 

programming and adjusting the system,  
- Achieving the preconditions for easy assembly and disassembly of products. 

 
1.3 Application 
 

The proposed concept is applied in the assembly domain, since the assembly activities 
commonly make up on average 40% of product costs and 50% of production investments 
[Del96]. This is where the greatest competitive advantage can be gained by introducing more 
responsive manufacturing paradigms. Thus, the increased complexity of the manufacturing 
domain is especially crucial in the assembly area, which involves a lot of manual work, copes 
with shorter life cycles, many variants as well as smaller lot sizes of the product and is 
therefore responsible for a major part of the manufacturing costs [Bed91, Del96]. 
Furthermore, an assembly system has to be able to react on internal disturbances which occur 
during assembly and which endanger the operation of the system [Hei01]. There has been a 
clear recognition of the need for agile, knowledge intensive assembly systems that can easily 
absorb the required changes in product volumes, variety and manufacturing organization 
[Hei00]. 
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As a basis of the developed architecture, the existing “Test bed for Distributed Holonic 
Control” at the Institute for Automation and Control1, Vienna University of Technology, has 
been used and its structure and functions emulated. The Test bed architecture consists of an 
automatic storage system with a handling unit for the extraction of parts, a pallet transfer 
system with redundant paths, as well as a portal for the final assembly. 
 
1.4 Objective  
 

The primary scientific aim of this thesis is to investigate the applicability and 
effectiveness of a knowledge-based multi-agent architecture for managing distributed 
manufacturing systems. Furthermore, this thesis will also pursue research questions such as: 
how does the ontology affect the development of a distributed manufacturing system, which 
conditions should be fulfilled to support knowledge acquisition and sharing across its 
heterogeneous sources, can the use of ontologies really solve the interoperability problem in 
the manufacturing domain as well as which steps should be done and to ensure the easy 
“agentification” of manufacturing components? 
In order to find answers to the questions above this thesis pursues the following research 
goals:  

- Development of an innovative and agile architecture for distributed manufacturing 
control systems, 

- Establishment of semantic interoperability among heterogeneous, enterprise levels,  
- Design and employment of a persistent assembly ontology, 
- Employment of knowledge-based techniques for improvement of the decision making 

process in intelligent agents,  
- Creation of a facility that will enable the easier incorporation of agents into industry 

applications. 
 
1.5 Methodology 
 

A multi-agent system is a complex software system and its design and development is 
a complex process. This complexity is based on the distributed systems structure and reflects 
itself through the behavior adjustment of the individual agents to form the emergent system 
behavior. Several methodologies have been proposed for building MAS. The GAIA 
methodology has been presented by Wooldridge et al. [Woo00], MESSAGE by Caire et al. 
[Cai01] and Tropos by Giunchiglia et al. [Giu02]. Our approach for developing the KASA 
architecture is fundamentally based on a methodology for modeling multi-agent systems 
called Multi-agent Systems Engineering (MaSE) [DeL01]. The MaSE has been chosen since 
it provides a complete lifecycle methodology for developing MAS. However, since the 
mechanisms for the integration of ontologies and knowledge are not completely provided, we 

                                                 
1 http://www.acin.tuwien.ac.at 
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developed these missing parts. The development of MAS is divided into the following three 
phases: analysis, design, and implementation (Figure 1.1).  

The objective of the Analysis is 
understanding the system and its structure 
and the consideration of system requirements. 
This phase identifies all system goals, the 
manner how to reach these goals as well as 
relations and hierarchy between them. 
Besides, this phase divides the goals to 
related tasks and specifies the scenarios of 
their execution. Furthermore, the specific 
roles that can be responsible for the 
achievement of particular goals are also 
created and related tasks to be performed are 
assigned to those roles. These roles could be 
later transformed to particular agent classes. 
The phase finishes with the specification of 
the interaction model to support the goal 
organization that the system needs to 
accomplish.  

The Design phase essentially consists 
of defining a solution for the system model, 
which was previously specified in the 
analysis activity. In the design process the 
following activities have to be performed: 

- Identification of the number and type 
of the agents, 

- Specification of the inter-agent 
relations and the required interaction 
protocols, 

- Specification of ontology 
requirements (content, knowledge 
sources, potential users, usage scenarios, terms and potential relations between them, 
etc.), 

- Development and refinement of the system ontology, 
- Creation of the agent structure and development of the knowledge for each specific 

agent in the system, 
- Analysis of the knowledge structure, preparation of validation scenarios and 

application of test scenarios to evaluate the software. 

Ontology 
Devlopment

Agent 
Identificaton

Knowledge Base 
Development

Agent
Interaction

   A
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    Im
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  D

esign 

Interface 
between Agent 
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Figure 1.1: Methodology  
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The system Implementation is started once the multi-agent system has been designed. 
Simulation is an indispensable tool for tuning and validating the agents’ knowledge before 
they are applied to the real system. At the beginning of the simulation tests, the problem-
solving and interaction abilities of the agents are investigated. After the instantiation of 
specified agents and setting related parameters, simple tasks are use to check for 
incompleteness in agents knowledge. The resolving of potential inconsistencies, redundancy 
and conflict in the agent’s knowledge base enables to prevent possible. Furthermore, these 
tests are used for testing and validation of simulation environment.  

In the second ”Simulation for verification” phase, real assembly examples as well as 
routing trainings are used to test and validate the distributed system’s functionality. The 
agility and performance of the architecture are studied simulating different scheduling 
scenarios as well as the failure of machines, particular agents or other system components e.g. 
conveyers. The results of the simulation, the main scope of this thesis, will be used as an input 
for the MAS improvement before its deployment in real-life control, which is our next future 
task, and real system results will be used for improving the simulation. 

Due to the system complexity, the classical waterfall development model was used 
only for creating the basis system structure. We mostly used an iterative development process 
between phases, since the feedback from one phase had a lot of influence to the others. The 
feedback loop is used within as well as between the phases and repeated until the appropriate 
design is reached. 
 
1.6 Thesis Outlines 
 
The thesis is structured as follows.  

Chapter 2 is divided in two subsections. On the one side, the first part of the chapter 
reviews the state of the art in the manufacturing area with a special focus on the 
manufacturing control, the basics of knowledge modeling with a special focus on ontologies 
as the crucial factor that captures semantics within the knowledge model as well as their 
application in manufacturing domain are reviewed. On the another side, the second part of the 
chapter gives the overview of the reported work related to production planning and 
scheduling considering basic preconditions and requirements needed for their integration. In 
this chapter, we also analyzed the recent research work done in the MAS domain specifying 
advantages of the MAS and presenting the main weaknesses and challenges that need to be 
solved.   

Chapter 3 will describe the proposed multi-agent architecture and the role of each 
agent within this architecture. This chapter will also present the underlying concepts used to 
support the architecture comprising of a description of the system ontology, including the 
organization and vocabulary definition as well as the definition of the low-level control layer. 

The basics of dynamic scheduling are introduced within the Chapter 4, including state 
of the art, requirements as well as the application scenarios. The scheduling algorithms and 
the rescheduling strategies for the reaction to disturbances are presented as well.  
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Chapter 5 presents the system failure tolerance concept. The implementation and 
experimental results, concerning stability and robustness of the system are reported in this 
chapter.  

Chapter 6 explains the realization of the proposed approach and briefly describes the 
used tools as well as the way of their application.  

Chapter 7 discusses the main results and the main achievements of this work. The 
possible directions for further research are presented.  
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2. State of the Art  
 

“The farther backwards you can look, 
 the farther forward you are likely to see.” 

Sir Winston Churchill 
 

2.1 Introduction to manufacturing systems 
 

Over the history, manufacturing systems followed the evolution of the market trying to 
accommodate the customer demands. It started with Eli Whitney in 1798, when he announced his 
ability to produce, for that time, incredible 10000 muskets within 28 months. He pioneered with 
the standardization in production of muskets by designing the templates for each musket’s part as 
well as by adding machines for the production of interchangeable parts. However, although he 
didn’t reach his aim - completing his contract 10.5 years later - he set the basis preconditions for 
incoming mass production age [Boo05]. The basic principles of the mass production defined 
Frederick W. Taylor developing methods for the measure and design of machining methods. He 
used time and motion studies to analyze and split complex operations into a number of smaller 
and repetitive tasks in order to increase the production efficiency [Tay11]. This age really started 
when Henry Ford applied these principles and introduced a moving assembly line for producing 
the Ford model T automobile in 1913, reducing the production costs and at the same time 
increasing productivity and product quality [Bar04]. H. Ford could afford to say that “a buyer 
could have any color of the car he wanted so long as it was black”, since he was able to offer the 
affordable product to the insatiable market at that time. This system fell apart in the 1970s due to 
bad attitude towards workers and its inflexibility to change according to customer demands 
looking for more quality and for customized products at a favorable price. Responding to these 
demands, the manufacturing domain invested more in automation and forced the "Just in Time" 
concept pioneered by Toyota producing only what is needed when it is needed, looking also for 
solutions in the emerging information technology based on computers called Computer 
Integrated Manufacturing (CIM) [Har73]. Nevertheless, these showed expected results in the 80s 
by evolving in Lean Manufacturing age which incorporated Japanese philosophy based on waste 
elimination, permanent improvement and efficiency maximization [Wom90]. However, this 
paradigm shows weaknesses when facing the continuous process of market changes characterized 
by the shorter life cycles, many variants as well as smaller lot sizes of the product. Furthermore, 
the global competition is forcing the manufacturing domain to produce customized products in a 
short time and at a low price. All these requirements imply and increase the complexity of the 
process control and planning, which are involving a huge amount of parameters that has to be 
considered and combined with characteristics of modern technology manufacturing systems that 
are already complex on their own. This increased complexity of current manufacturing systems 
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together with dynamic conditions and permanent demands for flexible and fault-tolerant 
functionality makes their management and control very difficult and challenging. Manufacturing 
systems are expected to face all these requirements, achieving shorter lead-times and at the same 
time coping with external turbulences (dynamic market changes and technological challenges) as 
well as with internal disturbances (e.g. process failures or machine breakdowns). The new agile 
manufacturing paradigm is seen as a concept able to help manufacturing systems to enter the new 
production age [Kid94]. The concept of agile manufacturing offers the solutions that could enable 
the manufacturing systems to be more concurrent, flexible, adaptive and capable to rapidly 
reconfigure themselves. Gunasekaran defined agility “…as the capability to survive and prosper 
in a competitive environment of continuous and unpredictable change by reacting quickly and 
effectively to changing markets, driven by customer-designed products and services….” [Gun98]. 
The main strengths of the agile manufacturing paradigm are its concepts of a seamless 
information flow from the product design over production until its final delivery to the costumer 
as well as the new shop floor organization. The agile paradigm breaks also the company borders 
forcing the creation of “competent enterprises networks” (virtual organizations), where each 
company within the alliance offers specific services and products.  

Summarizing this short overview it could be concluded that investments in innovation, 
standardization and automation, which lead to an improved flow of products, data, information 
and knowledge, have always brought the spearheads significant advantages in comparison with 
others.  
 
2.2 Manufacturing Control 
 

The factory control is defined “…as the actuation of a manufacturing plant to make 
products, using the present and past observed state of the manufacturing plant, and demand from 
the market”. It is the fundamental system of a factory, because “It coordinates the use of the 
factory’s resources, giving the system its purpose and meaning” [Bak98]. The manufacturing 
control can be divided into low-level and high-level control [Chr03]. The high-level part of the 
factory control is responsible for the coordination of the manufacturing resources and 
government of the production including the ERP (Enterprise Resource Planning) as well as the 
MES (Manufacturing Execution System) level. The low-level control is focused on the control of 
the individual manufacturing resources and their reliable function during the execution of 
operations organized on the high-level.  

The manufacturing control architectures can be organized in a centralized, hierarchical, 
hybrid or heterarchical way as presented in Figure 2.1.  
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Figure 2.1: Control Structures [Lei04] 
 

The centralized architecture is characterized by a central unit, which “sits” on a central 
database that provides a global view of the system, and does the control, planning and scheduling 
for a whole plant. The hierarchical architecture is built up in a pyramidal structure, where each 
node has its own purpose and tasks. In this architecture the flow of commands is typically top-
down and the flow of information is bottom-up. The heterarchical architecture does not contain 
any supervisory controller or any other hierarchical element. The hybrid architecture is a 
combination of both hierarchical and heterarchical approach and allows direct communication 
between nodes in the control pyramid. 

In current manufacturing systems, the hierarchical or centralized structures are the most 
commonly used system architectures. However, due to their rigid character and limited adaptation 
capabilities such systems respond weakly to frequently changing customer demands in terms of 
performing necessary changes in the manufacturing environment itself [Jon86, Par96, She99]. 
Present centralized and hierarchical control structures cannot dynamically manage the high 
degree of complexity – their modification is a very expensive and time consuming process. This 
is especially evident in the cases when certain resources become unavailable or additional 
resources are introduced to the system, since their rigid structure hinders a flexible redesign of 
the system. Additionally, the construction of a centralized system, due to large complexity and 
the necessity to centralize all logic for sensing, actuating and control into a single entity, usually 
requires a huge investment, long lead times, and in turn, results in generating a rigid control 
system [Col06]. The central controller, as it needs to have the accurate information about each 
unit in the system in order to make right decisions, can be seen as a single point of failure and its 
breakdown could stop the whole system [Kro99]. Scheduling, in centralized and hierarchical 
control structures, is established such that each level creates the scheduling for its subordinate 
levels having a weak feedback from lower levels and almost without any consultation and 
coordination with higher layers of neighboring units. Such an approach works well only if 
everything goes as expected; otherwise it could completely fail when unpredictable disturbances 
occur [Bus04].  

Control Component

Manufacturing Entity

Centralized Hierarchical Hybrid Heterarchical
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The application of decentralized control architectures based on autonomous and co-
operative units is considered as a promising approach for overcoming the weaknesses mentioned 
above [Fav04, Zei08]. Several emerging concepts like Holonic [Bru98], Multiagent [Jen98], 
Fractal [War93] and Bionic architectures [Oki93] are proposed as paradigms capable to handle 
the combinatorial complexity of manufacturing systems. These architectures, inspired by existing 
natural or social organization systems, are based on distributed entities (i.e., holons, agents, 
fractals or cells), which are using the self-organization principle to handle the system dynamics 
[Tha96]. 
 
2.2.1 Multi-agent Systems 
 

The multi-agent approach has been widely recognized as enabling technology for 
designing and implementing the next-generation of distributed and intelligent manufacturing 
systems [She01, Bus04, Pec08]. Multi-agent systems can be defined as a network of autonomous, 
intelligent entities – agents – where each agent has individual goals and capabilities as well as 
individual problem-solving behaviors. Due to their lack of a global system objective and 
overview, agents have to cooperate and communicate with each other in order to achieve 
common aims, which are beyond the individual capabilities and knowledge possessed by each 
agent. This approach replaces a centralized database and control computer by a network of 
agents, each endowed with a local view of its environment and the ability and authority to 
respond locally to the environment.  

The concept of an agent was invented in the domain of artificial intelligence (AI). There 
are several definitions of an agent, however the definition from Wooldridge integrates most of the 
agent characteristics “an agent is an autonomous software entity that functioning continuously 
carries out a set of goal-oriented tasks on behalf of another entity, either human or software 
system. This software entity is able to perceive its environment through sensors and acts upon it 
through effectors, and in doing so, employs some knowledge or representation of the user’s 
preferences” [Woo99]. An agent: 

- can make its own decisions and act autonomously in order to achieve its goals,  
- can perceive its environment or interact with other agents in order to get the accurate 

environment representation, 
- cooperates and collaborates with other agents, if it doesn’t possess knowledge and 

expertise to accomplish its own goals; 
- negotiates or competes with other agents in order to achieve better results, 
- has the ability to acquire and to memorize new knowledge [Chr07]. 

Two different approaches for agent encapsulation in agent-based manufacturing systems are 
known: the functional decomposition approach and the physical decomposition approach 



CHAPTER 2. STATE OF THE ART 

 

12

[She99]. In the functional decomposition approach, agents are used to encapsulate modules 
assigned to functions such as an order, task, etc. In the physical decomposition approach, agents 
are used to represent entities in the physical world, such as a robot, conveyor, pallet, etc. Based 
on the agent’s behavior, the agents can be sorted into: reactive, deliberative and hybrid agents. 
Reactive agents are observing the environment and act to its changes in a reflexive way without 
maintaining any internal state or considering any historical information. These agents are usually 
used in architectures which have to satisfy real-time constraints. Contrary to reactive agents, 
deliberative agents behave like they are thinking, requiring accurate information about the status 
of the environment as well as historical information in order to make action plans and to predict 
the effects of actions. However, if the complexity of the problem significantly increases, their 
reliability and real-time reaction becomes questionable. A hybrid agent is a combination of the 
reactive and deliberative approach. Based on the mobility of an agent, it can be classified into a 
mobile or stationary agent. 

Several different agent architecture types have been proposed in the literature: 
hierarchical, federate and autonomous [She07]. Hierarchical architectures correspond to the 
currently mostly used hierarchical organization of manufacturing companies. The agents are used 
to control particular components of the system, which are having hierarchical (master-slave) 
relationships, and by simply copying their functionality, the hierarchical structure of the agent 
organization is reproduced. The hierarchical type of organization could emerge by the usage of 
functional decomposition of some processes or entities that naturally have such a kind of 
structure (e.g. product order–work order–task, etc.). Within the federate based structures, the 
facilitator and mediator approaches are known as most dominant. The facilitator approach 
organizes agents in groups that communicate between each other through an interface called 
facilitator. The facilitators are responsible for the communication layer organization, messages 
translation, message routing and sometimes also for problem decomposition as well as 
scheduling and coordination between agents. Characteristic for this architecture is that there is no 
direct communication between the agents since the whole communication is transmitted over 
group facilitator. The mediator approach is based on mediator agents that can offer their services 
to all agents in the system. The mediators use brokering or recruiting mechanisms to find related 
agents, applying sometimes different techniques to learn from the agents’ behavior. However, 
once the required agent has been found the further communication can continue with or without 
of interfering mediator agent which means that agents could communicate and cooperate directly.  

The autonomous architectures are based on agents able to independently and individually 
handle their actions and states. Having their own behaviors, knowledge about other agents and 
environment representation, autonomous agents do not necessarily need the global overview to 
reach their goals. However, in the case of large amounts of agents the system could become too 
complex to be managed properly with highly unpredictable behavior.  
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a) Communication 
Communication is one of the essential ways for agents to build and maintain the accurate 

representation of its environment. The exchange of the information enables agents to cooperate, 
negotiate and coordinate their actions. However, in order to “understand” each other (e.g. to 
interpret message correctly), agents need to use a common representation language and protocols 
as well as to share the semantic content of the represented knowledge [Fin94a]. In this sense it 
was necessary to develop an Agent Communication Language (ACL) that could be used as a way 
for exchanging information and for the embodiment of message content. The most widely used 
ACLs in multi-agent systems are the Knowledge Query and Manipulation Language (KQML) 
[Fin94b] and FIPA-ACL [Fou03]. Both languages adopted the speech act theory as a basis for 
agent communication [Aus62]. The speech act theory provides a clear way for expressing the 
meaning of the communicative actions carried out by the agents defining the types of messages 
and constraining the semantics. 

The KQML has been introduced by the US DARPA’s (Defense Advanced Research 
Projects Agency) Knowledge-Sharing Effort and is designed to support information and 
knowledge sharing among intelligent software agents offering a message format and a message-
handling protocol. KQML is built on the open Internet standards and it is compatible with the 
TCP/IP, SMTP, and FTP protocols.  

The Foundations for Intelligent Physical Agents (FIPA) organization, formed to produce 
software standards for heterogeneous and interacting agents and agent-based systems, presented 
FIPA-ACL which is similar to KQML. A comparison of both languages has been done by Labrou 
[Lab01]. A message written in FIPA-ACL consists of the following elements: performative, 
sender, receiver, content, language, encoding, ontology, protocol, conversation-id, etc. The 
fundamental elements are language, performative (e.g. INFORM, REQUEST, CFP, PROPOSE, 
AGREE, FAILURE, SUBSCRIBE, etc.), content and ontology. In this dissertation, we used 
FIPA-ACL for communication, RDF as content language and XML as an encoding syntax. 
Nevertheless, the content of an ACL message received by an agent can be understood only if it 
shares a common ontology with the agent that sent the message [Gun05]. 

 
b) MAS Advantages 

Making the control of the system decentralized, intelligent agents offer a convenient way 
of modeling processes and systems that are distributed over space and time, thereby reducing the 
complexity, increasing flexibility and enhancing fault tolerance [Jen03]. It has been suggested 
that the multi-agent system approach is especially adequate for the solution of problems with a 
dynamic and uncertain nature [Ald04]. Nevertheless, the agent-oriented concepts are as well 
suited for developing and extending complex, distributed systems by providing the most natural 
means of representing the distinct individuals and organizations, suitable abstractions, the ability 
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to wrap legacy systems and flexibility for organizational structure changes [Jen01]. Generally, 
the introduction of agent-based techniques can bring the following benefits [Syc98, Sto00]: 

- Robustness – sharing the control capabilities among the different agents, the system is 
able to tolerate when one or more agents fail. 

- Scalability – it is easier to add new agents possessing new capabilities to the distributed 
system, than it is to extend the rigid structure of a centralized system by adding new 
functionality. 

- Reusability – the development and maintenance of a modular system is easier than of a 
monolithic one. Agent classes with specific behavior to control particular manufacturing 
equipment developed for one application can be further reused when developing another 
control application. 

- Parallelism – distributing the system and applying multiple agents can enhance the overall 
system performance and provide time savings by deploying parallel computation. 
Respecting its advantages, a lot of research has been done and reported with regard of the 

Considerable research results have been achieved in the application of MAS to a wide range of 
manufacturing tasks including low-level, shop floor control, process planning and scheduling, 
information and project management as well as modeling of logistics systems, supply chains and 
virtual organizations. 

In the next few subsections we will elaborate the relevant and recent work related to the 
manufacturing control area concerned with the high-level and low-level control. Furthermore, 
weaknesses and challenges of current applications will be identified and some solutions 
suggested.  

 
2.2.2 High-level Control 

 
One of the earliest MAS applications was the YAMS (Yet Another Manufacturing 

System) system [Par87]. YAMS modeled a manufacturing enterprise as a hierarchical system 
made of the following entities: plants, flexible manufacturing systems, workcells and, on the 
bottom, workstations. In contrast to traditional hierarchical systems, each entity (here represented 
as an agent) is able to not only negotiate with its parent and children, but also with its siblings as 
well. Each agent has a collection of plans representing its capabilities and uses the Contract Net 
Protocol (CNP) for inter-agent negotiation [Smi80]. 

Peng et al. presented a multi-agent consortium CIIMPLEX established for supporting the 
intelligent integration of manufacturing planning and execution, especially in managing the 
exceptions in business scenarios [Pen99]. Besides the common service agents, the gateway agent 
is used to provide an interface between the agent world and the application world making 
connections between the transport mechanisms and converting messages between the two 
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different formats. The consortium introduces also several specialized agents such as data-
mining/parameter-estimation agents needed to prepare the aggregated information about low-
level activities for higher level analyses by other agents, event monitoring agents, which detect 
abnormal events, the analysis agents that evaluate disturbances of to the current planned schedule 
and recommend appropriate actions as well as the scenario coordination agents which assist 
human decision making for specific business scenarios. The proposed multi-agent system is 
demonstrated through an example integration scenario involving real planning and execution 
software systems. 

Oliveira [Oli94] implemented a heterarchical multi-agent architecture for an assembly 
robotics cell. Intelligent sub-systems (agents) representing the specific functionalities are: task 
planner, execution planner, object recognition systems, data base and world descriptor that 
coordinates other agents’ activities in order to minimize the occurrence of conflicts. 

The needs-driven AARIA (Autonomous Agents for Rock Island Arsenal) agent system, 
developed for an Army manufacturing facility, encapsulates agents as representation of parts, 
resources and unit processes [Par98]. Each agent interoperates with other agents in and outside its 
own factory and uses the market-driven, inter-agent coordination approach for schedule 
optimization. The agent infrastructure supports broadcast and multicast communication, subject 
based addressing for inter-agent, location-independent communication as well as dynamic 
mechanisms for agent creation, migration, duplication and termination. The AARIA architecture is 
implemented on top of the Cybele agent infrastructure. The improved system performance related 
to the systems agility and equipment utilization has been reported. 

MetaMorph I is a multi-agent architecture for intelligent manufacturing built as a 
federated organization [Mat96]. There are two main types of agents: resource agents (used to 
represent manufacturing devices and operations) and mediator agents. The mediator agents have 
the role of system coordinators and use brokering and recruiting communication mechanisms to 
find related agents for establishing collaborative subsystems. To support coordination, the 
architecture employs learning mechanisms for learning from the simulated future as well as for 
learning from the history. With the objective to integrate design, planning, scheduling, execution, 
etc. the MetaMorph II extends the previous MetaMorph I architecture and uses the hybrid 
approach for organizing and integrating the subsystems at the highest level through special 
mediators [She00a]. Each subsystem, which can be an agent-based system (manufacturing 
scheduling, management, etc.), can represent a complex system that is composed of other 
subsystems. However, agents in particular subsystem have the ability to communicate directly 
with other subsystems or with the agents in other subsystems at the same or different levels. The 
simulated architecture consists of four mediators: the Enterprise Mediator which is having 
administration role registering all other mediators, the Design Mediator which is used to integrate 
a feature-based intelligent design system, the Resource Mediator that provides the high-level 
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coordination for a manufacturing shop floor, and the Marketing Mediator for the integration of 
the customer services into the system. The applied architecture features a reduced 
communication, easy integration of legacy systems and maintenance as well as considerable 
flexibility and scalability of the system.  

Bussmann and Schild reported the development of a flexible transportation system and the 
associated agent-based control within the frame of the Production 2000+ project [Bus01]. In their 
architecture, a specific agent is associated with each workpiece, each machine, and each shifting 
table. The overall goal of the system is to continuously optimize the throughput while machine 
agents manage buffer sizes, workpiece agents manage the processing state of a specific 
workpiece and shifting table agents try to optimize the routing. The dynamic task allocation is 
organized as an auction where workpiece agents sell their current tasks, whereas machine agents 
bid for tasks taking into account the machine's current workload as well as the workpieces 
leaving the machine. The system has been evaluated in a series of simulations based on real 
manufacturing data (product types, processing times, disturbance characteristics, etc.). The 
simulations have shown that the agent-based control is extremely robust against disturbances of 
machines as well as failures of control units achieving a performance near to the theoretical 
optimum. In addition, the control system has been installed in the DaimlerChrysler plant in 
Stuttgart validating the results of the simulations under real manufacturing conditions. However 
this installment has been removed after some testing time because of two reasons. First, the used 
control hardware for the agent platform were standard PCs and therefore not suitable for an 
industrial environment. Second and more severe problem was the inability of the maintenance 
personnel to easily determine if the plant is working correctly or not because of the dynamically 
changing resource allocation as a result of agent negotiation. 

Rockwell Automation, Inc. has investigated and implemented agent-based solutions for a 
number of industrial applications. One of the very first Rockwell Automation (RA) industrial 
agent projects was to increase the machine utilization of a steel rod bar mill at BHP Billiton, 
Melbourne in the mid nineties. The agent-based control was applied for the dynamic selection 
and configuration of a subset of working cooling boxes and rolling stands to satisfy the recipe 
requirements. In order to avoid the enclosure of the broken units in a subset, each cooling box 
and rolling stand was represented by an agent with the capability to assess its own health and bid 
on its part of the operation. Because of safety concerns and the anxiety of possible damage to the 
equipment, the agent-based control system did not directly control the bar mill but instead 
recommended a configuration to the human operator [Mar05a]. 

Another successful deployment of a multi-agent system by Rockwell Automation was the 
distributed control of a ship equipment applied to reduce the manning as well as to improve 
readiness and survivability of US Navy shipboard systems [Mat04]. The implemented system 
architecture is based on three hierarchical levels: the Ship-level is responsible for ship-wide 
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resource allocation and communication with the ship crew; the Process-level optimizes the 
performance of the automation components and ensures the availability of services; and the 
Machine-level, as the lowest one in the hierarchy, focuses on control, diagnostics and 
reconfiguration of the shipboard equipment. The architecture of an agent consists of four main 
modules: planner, device model, execution control, and diagnostic. A simulation environment as 
well as physical, table-top demonstrator was built in the Rockwell Automation’s research 
laboratories in Cleveland to allow testing the agent system functionality in a set of scenarios that 
mimic the transactions of the real shipboard system. Subsequently, the agent-based control 
system was successfully deployed on a physical, scaled-down model of the US Navy ship with 
agents running on standard PLCs of Logix family. The applied architecture provides a simple 
manner to establish system functions and dynamically emerging relationships among the system 
components without pre-programming the relationships. Further achieved advantages of the 
presented solution are: the system scalability, the ability to reconfigure complex systems in a fast 
way (within seconds) and the ability to continue in operation with partially damaged equipment 
[Tic06]. 

A simulation test-bed for the evaluation of agent-based distributed shop floor scheduling 
and control system is presented by Brennan and O [Bre00]. The architecture consists of four 
basic agents types, related to the basic holons used in the PROSA architecture [Bru98]: job agent, 
station agent, machine agent and mediator agent. The job agent is responsible for initiating the 
auction-based bidding process to find the resources for the job’s operations, and monitoring the 
job’s production progress. The station agents are responsible for the task assignment to specific 
machines, to monitor the production progress of the machines and to response to the job agent’s 
bidding request. The machine agent, depending on the functional limitations of related low-level 
controllers, controls a particular machine. It can perform either simple operations or participate in 
a bidding process when bearing similar responsibilities as a station if the related related controller 
has the information processing and communication capabilities. The mediator agent registers the 
manufacturing resources and responds to the job agent's queries regarding which resource in the 
system can perform a particular type of operation. The architecture is evaluated on a test bed 
implemented in the Arena discrete event simulation package. 

The multi-agent-system for production control of semiconductor wafer fabrication 
facilities called FABMAS is reported in [Mon03]. Due to the physical decomposition of the 
shop-floor into work areas and on the next level into machine groups that contain parallel 
machines, the agent architecture based on PROSA [Bru98] is organized in three layers using the 
following decision-making agent structure: single production system agents, multiple work area 
agents and multiple machine group agents. There are also additional agents used for modeling 
jobs and batches – they are not considered as part of a hierarchy and so they do not have any 
communication restrictions. The discrete event simulator AutoSched AP is used to simulate the 
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behavior of the wafer fabs shop floor which consists of over 200 machines that are organized in 
about 80 different machine groups forming five work areas. The blackboard mechanism is used 
to exchange the sensor and actuator signals between the simulation and the FABMAS agent 
system. 

Lastra et al. developed and applied the concept of intelligent mechatronic devices  (actors) 
to the assembly domain [Mar05]. This concept – Actor-based Assembly Systems (ABAS) – is 
built on autonomous mechatronic devices (such as robot arms) that deploy auction- and 
negotiation-based multi-agent control in order to collaborate towards a common goal. This goal is 
a composition of simpler activities (assembly operations) which are the individual goals of the 
particular actors. A 3D visualization and simulation environment for the emulation of actors 
consists of two software tools: ABAS WorkBench and the ABAS Viewer. ABAS WorkBench, 
used for both modeling and emulation of actors, provides the designers with the ability to 
produce actor prototypes and experiment with them prior to the real implementation. The main 
goal of the ABAS Viewer is to monitor the performance of ABAS systems, serving as a runtime 
platform where actor societies can be deployed and visualized in a 3D environment.  

Candido and Barata presented a multi-agent application developed to control a shop floor 
system [Can07]. The approach that follows some guidelines from the CoBASA (Coalition Based 
Approach for Shop Floor Agility) reference architecture [Bar05] is applied to the NovaFlex 
manufacturing system at the Intelligent Robotic Centre in UNINOVA, Portugal. The system is 
composed of two assembly robots, an automatic warehouse and a transport system that connects 
all these modules. Each shop floor component is abstracted as a Manufacturing Resource Agent 
(MRA) providing basic skills. More MRA agents can be aggregated to form a coalition providing 
complex skills. The Coalition Leader Agent gathers coalition members' basic skills to find out 
what complex skills (composition of elementary skills) could be supported by the coalition. The 
architecture provides also the Broker Agent, which gathers information from the environment and 
supervises/supports the process of creating the coalition. In order to maintain MRAs 
independently from a particular controller, a software Agent-Machine Interface wrapper is used 
to execute the skills exposed by the MRA and in order to abstract the lower level interaction with 
the hardware. An ontology is used to ensure an accurate information exchange, as well as to 
define the domain and relations between entities.  

The successful deployment of the Manufacturing Agent Simulation Tool – MAST – in the 
manufacturing testbed at the Automation and Control Institute (ACIN), Vienna University of 
Technology (Figure 2.2) has been reported by Vrba et al. [Vrb08]. The MAST system is used to 
control the physical palette transfer system of the testbed consisting of 14 conveyor belts, 12 
diverters, 4 docking stations and a number of sensors and stoppers. Three types of agents are used 
for representing the physical components (diverter, conveyor and docking station), whereupon 
each component has its own agent instance associated. The conveyor system is used to transport 
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Figure 2.2: MAST application on the palette transfer system of the Odo Struger laboratory 
(ACIN, Vienna University of Technology) 

the palettes carrying raw materials or products between the docking stations, where the palettes 
are held until a particular manufacturing process is finished. The palettes are routed by the 
diverters that use reachability knowledge to send the palette to its required docking station at the 
lowest costs. The pallet agent selects the next docking station by searching the Directory 
Facilitator (yellow-pages services provided with the agent platform – JADE in this case [JAD08]) 
for a list of registered docking station agents. A failure scenario was tested – after a conveyor had 
failed (by turning off its drive), the conveyor agent notified its neighboring agents (representing 
for instance diverters or docking stations) that the conveyor is not available any more. 

Subsequently, the agents started to look for alternative routes for pallets to avoid the broken area. 
To increase the level of robustness of the deployed control system against non-determinism and 
disturbances of the real world, an embodiment of diagnostics to the agent as well as to the low-
level control parts has been suggested.  

 
2.2.3 Low-level Control 
 

Applied in the manufacturing environment, the control system has to pay attention to the 
real world conditions and run under real-time constraints. The outcome of the performed action is 
not only based on the related reasoning but also on the time within which the action is executed. 
This is particularly important for subjacent embedded systems due to their responsibilities for 
directly dealing with the environment and synchronizing of their operations. These systems have 
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to be able to observe the variation of the environment in order to immediately execute a set of 
certain actions or to send the accurate information to the high level agent-based control system. 
The linkage between the physical pieces of equipment controlled by the agent and the specific 
agent itself, is seen as a key characteristic of the application of agent technology for industrial 
control purposes [Vrb08].  

One suggested approach is coupling the control and automation functions, whose response 
times range from 10 to 100 ms, in to the Low Level Control (LLC) layer as suggested by 
Christensen in the HMS architecture [Chr03]. The LLC is a user defined software application 
based on the IEC 61131-3 [IEC31] or IEC 61499 [IEC99] standards, which governs the actions 
of the subjacent physical system. The LLC is responsible for acquiring system information via 
sensors, executing particular control actions and sending signals back to actuators to carry out an 
action in the physical world. The LLC layer interacts with the HLC (High Level Control) layer. 
The HLC delegates particular tasks to the LLC and thus indirectly controls their execution. On 
the other hand, the LLC informs the HLC on the fulfillment or failure of the delegated tasks. For 
example, the Index station agent residing in the HLC instructs the LLC to hold a particular pallet 
when it arrives or requests to release it after the robot finishes a particular operation. On the other 
side, the LLC fixes the pallet when it arrives and then informs the agent about the arrival. The 
LLC can also diagnose some kind of failure (e.g. climb stock) and inform the agent about it. Built 
on top of the mechatronic components, the LLC layer runs on real-time embedded control 
equipment which includes the interfaces to the mechatronic components and the control 
application. In the case of industrial automation such equipment is typically a Programmable 
Logic Controller (PLC). Based on the currently most used IEC 61131-3 standard [Joh01] for 
programming PLCs, several concepts have been applied to establish these interfaces: Function 
Block Adapters (FBA), COM/DCOM technologies, black board or data table sharing. The first 
concept uses FBAs as interface between Real-time Unified Modeling Language (RT-UML) 
capsules and IEC 61131-3 function blocks. The behavior of an FBA is expressed by the special 
FBA-Language which defines operations which are called when signals arrive from a port or 
from the function block [Hev01]. 

The design and realization of an agent-oriented control system based on DCOM 
(Distributed Component Object Model) in simulation and under real shop floor conditions was 
done by DaimlerChrysler AG within the frame of the Production 2000+ project mentioned earlier 
in this thesis. A specific COM module, which encapsulates the algorithm for any agent type, is 
linked at runtime to a DCOM-based communication framework enabling the interactions with 
PLC programs controlling operations of the physical hardware [Sch00]. The discrete-event 
simulation model of a manufacturing system developed in C++ that utilizes COM/DCOM 
technology is presented by Brennan and O [Bre00]. The agents, encapsulated in COM objects, 
represent specific entities in the production system that is simulated in the Arena framework. 
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Agents, distributed over a network of computers communicate with Arena using the remote 
procedure call [Bre00]. The Agent-Machine Interface is the agent wrapper developed using 
DCOM and used in the NovaFlex environment to keep the agent behavior independent from the 
implementation details of the specific low-level control actions performed on PLC controllers. 
PLC manufacturer's proprietary Java interface libraries are used for reading and writing tags the 
Beckhoff PLC over the Ethernet to interact with IEC 61131-3 control programs [Can07]. 

Concerning MAST, the data-table concept is used for the implementation of the PLC-
based control interface enabling the agents to interact with the physical system. The I/O values, 
transferred via the DeviceNet industrial communication network and stored in ControlLogix PLC 
tags, are directly accessed by MAST agents to allow monitoring and controlling of particular 
physical components [Vrb08]. Testing this architecture on a physical palette transfer system 
installed at the Automation and Control Institute (ACIN) at the Vienna University of Technology 
acknowledged the need for the underlying LLC layer for handling the low-level real-time 
activities. The agents (implemented in Java/C++), directly handling I/Os without presence of a 
LLC, revealed insufficient capabilities for meeting the hard real-time constraints. The 
recommended solution is to let the agents making global decisions and leave the low-level 
control subsystem to transform these decisions into the corresponding actuation in the real world.  

A similar approach was presented by Rockwell Automation within its Shipboard 
Automation project. The Autonomous Cooperative System (ACS) architecture (implemented in 
C++) was introduced to provide an agent runtime environment for the standard Rockwell 
Automation ControlLogixTM and FlexLogixTM controllers. The firmware of the controllers was 
modified to enable hosting of 1-to-n of intelligent agents directly inside the controller. The ACS 
infrastructure enables also the distribution of agents over multiple controllers where they run in 
parallel and interact with the low-level control tasks (written in IEC 61131-3 ladder logic) by 
accessing the data-table of the controller [Mat04]. 

The control architectures for real-time and distributed manufacturing systems set a focus 
to a number of functionalities such as: autonomy, flexibility, reliability, fault-tolerance, 
interoperability, re-configurability, etc. The applied conventional systems, which are 
predominantly programmed according to IEC 61131-3, suffer often from a lack of these 
requirements [Wan98]. The system’s flexibility and disturbance handling capabilities of IEC 
61131-3 are limited due to its centralized nature and difficulty to manage changes dynamically 
[Bre07]. Furthermore, the cyclically scan-based execution model of its programs is sensitive to 
the order in which functional elements are placed in the program and specific complex 
synchronization problems in distributed environments could occur. Especially timing software 
switches as well as synchronizing internal states are complicated [Zoi06a]. Moreover, the 
insufficient resource replacements and only predesigned reconfiguration scenarios embedded in 
the application hinder its wider application in distributed environments. 
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The new standard – IEC 61499 [IEC04] – introduces event-driven function blocks (FB), 
offering a framework for the integration of run-time control, diagnosis applications as well as 
simulation for distributed automation [Vya02], and provides basic support for reconfiguration at 
runtime [Zoi06b]. Although many researchers have already been investigating different aspects 
of IEC 61499, the absence of tools and products that are compliant with this approach is evident 
[Thr05 and Zoi07]. An important aspect of this research is the establishment of a run-time 
communication interface allowing the transfer of information from the real-time control 
subsystem to the agent-based high-level control layer and vice versa. Two recent papers have 
reported the deployment of such an interface. Lopez and Lastra used IEC 61499 to build a low-
level FB application, which controls the environment by accessing the sensors and actuators, and 
which enables the agent level to perceive the environment [Lop07]. Special interfaces were 
developed that allow the communication interaction between components as well as internal 
communication between the low-level FB control and the high-level agent layer. A similar 
approach was reported by Hegny et al. [Heg08] that proposed the ontological representation of 
the communication channel and the message type to the agent level. This representation gives the 
agents the ability to reason about the purpose and meaning of the messages exchanged with LLC 
(e.g., sensor status information, device diagnostics, etc.). 

 
2.2.4 Weaknesses and Challenges of Agent-based Control Systems 
 

Although confirmed as a promising approach and deployed in a number of different 
applications over the past few years, the widespread adoption of agent-based concepts by 
industry and governments is still missing. The following weaknesses could be pointed out as 
main reasons for that:  

1) Lack of awareness about the potentials of agent technology in industry as well as the 
absence of publicity of successful industrial projects [Pec05]. 

2) Lack of standards and methodologies that could simplify the integration of this 
technology in the manufacturing domain.  

3) Missing trust in the idea of delegating tasks to autonomous agents [Syc98], especially 
considering emergent behavior of the overall control system (an aggregation of “small” 
behaviors of particular agents) that can hardly be predicted at the design time [Par97]. 

4) A “pioneer” risk, which accompanies every new technology that has not been proven in 
large scale industrial applications [Pec08].  

5) Lack of design and development tools mature enough for industrial deployment [Pec08]. 
6) Paradigm misunderstanding due to the lack of real industrial applications [Can07]. 
7) Current applications are custom-developed for every single implementation, which means 

that costs can be spread neither over multiple customers nor over time [Val04]. 
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8) Concerns regarding the stability, scalability and survivability, especially in unpredictable 
environments of attacks and system failures [Hel04].  

9) Increased complexity of the software structure; due to the fact that in distributed 
environments each entity has to have the accurate status of the environment in its 
application domain, corresponding mechanisms have to be introduced to ensure the 
reliability of the environment representation and the functionality of the system.  

Additionally to the weaknesses mentioned above, we also present research challenges that have 
to be fulfilled and considered to make a progress in the development and adoption of agent 
technologies: 

1) Achieving interoperability in the heterogeneous manufacturing environment is one of the 
most important challenges for distributed manufacturing control systems. Interoperability 
is considered as the seamless flow and share of data, information and knowledge among 
heterogeneous entities as well as among subordinated information systems. Semantic 
systems and ontologies as presented in Sect. 2.2.5 are expected to provide effective means 
for fulfilling these ideas. 

2) A further challenge is the linkage of the agent-based system to real-time information and 
its integration with the FB-technology [She06]. The inability to maintain an accurate 
representation of the environment in which an agent operates hinders effective task 
planning and execution.  

3) Direct transformation of received raw data into knowledge compliant with formally 
defined semantics and effective reasoning on this data is also considered as a big 
challenge [Vis98]. According to Morel et al. “a form of technical intelligence that goes 
beyond simple data through information to knowledge is required. Such technology 
embedded into manufacturing system components and within the products, will play an 
essential role to reach agility in manufacturing over flexibility and reactivity” [Mor05].  

4) “To enable two devices with no previous knowledge on each other’s type, conceived using 
different paradigms and interaction models but still with complementary skill sets, to 
interact autonomously” [Las06].  

5) The support of principles such as generality, reusability and long-term usage is seen as an 
important future challenge for software specifications [Val04].  

6) Introduction of tools, techniques and methodologies which ensure easier and more 
abstract ways of agent system development, modification and management will lead to a 
higher rate of acceptance as well as “understanding” of the concept.  

7) Assurance of security and trust in agents is a significant aspect to be considered in future 
solutions [Pec08]. Being applied in the manufacturing domain consisting of heterogonous 
entities and/or organizations, agent technology has to provide confidence that performed 
actions are done safely and effectively.  
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Summarizing the challenges it can be pointed out that besides the requirement for more efficient 
techniques and tools, the information and the ways of its handling are placed in the focus of 
future research. Completely new approaches where the information will be not treated as a 
“bunch” of strings and numbers but will be embedded with semantic providing the basis for its 
better “understanding” are required. Almost the same weaknesses detected by agent systems 
could be specified by the introduction of the IEC 61499 standard in the industry. However, the 
open problems as well as key research topics have been listed in depth by [Bre07, Thr05, and 
Zoi07]. 

 
2.2.5 Semantic Systems 

 
Being applied in distributed and heterogeneous environment and having only its partial 

representation the agents have to communicate with each other in order to coordinate their 
activities. Ontologies have been developed and investigated for quite a while in artificial 
intelligence and natural language processing to facilitate knowledge sharing and reuse [Kul05]. 
They are of vital importance for enabling knowledge interoperations between agents and, at the 
same time, a fluent flow of different data from different entities. Ontologies allow the explicit 
specification of a domain of discourse, increasing the level of specification of knowledge by 
incorporating semantics into the data, and promote its exchange in an explicitly understandable 
form.  

An ontology is defined as an explicit specification of conceptualization [Gru93], where 
conceptualization means the shared view of environment representation. From the viewpoint of 
inter-agent interactions, the explicitly defined and commonly accepted ontology is an 
indispensable tool for ensuring interoperability between agents in the sense of providing a 
formally defined specification of the meaning of those terms which are used during the inter-
agent communication. Ontologies can also capture actions and events in a uniform and 
processable way so that they can be recorded in time and further analyzed.  

An ontology includes classes, slots, relationships between classes, constrains about these 
classes and individuals. Classes represent a specific concept within the domain of interest. Slots 
represent properties of the classes. Constraints are used to define allowable values and 
connections within an ontology (Figure 2.3). Individuals are specific objects that instantiate the 
class and inherit its properties and relationships. If used for the description of complex domains, 
an ontology requires choice of an expressive language able to represent a particular domain. 
UML [UML], any object oriented language, or any other type of representation which can define 
objects, properties and its relations can be used for ontology representation. Several languages 
were developed for the promotion of knowledge representation and sharing as well as for data 
integration such as RDF [RDF], DAML+OIL [DAML] or OWL [OWL]. Currently, the mostly 
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used standard ontology language is OWL (Ontology Web Language). OWL is recognized by the 
Semantic Web community [W3CSe] as a best suitable for ontology representation. It is written in 
XML format that enables a common, well-defined and easily processable syntax but does not 
involve semantic into the date description by itself [Bray00]. 

Figure 2.3: Conveyor relations and properties 
 

For this purpose the Resource Description Framework (RDF) and Resource Description 
Framework Schema (RDFS) languages are used to describe interrelationships among resources in 
terms of named properties and values. OWL also supports the construction of distributed 
ontologies and offers the ability of accessing to a particular part of the ontology in order to update 
and revise it without interrupting the integrity of the top-level system ontology. OWL provides 
three increasing levels of expressivity in OWL Lite, OWL DL, and OWL Full respectively. This 
allows users to define their own needs for expressivity and chose a language version that supports 
their needs best. Due to its tight connectivity to RDF and since our approach is much more 
concentrated on the usage of rules for reasoning and less on Description Logic (DL), which can 
be used to determinate the semantics of OWL, as well as the decidability and complexity of basic 
inference problems, we will use the OWL Full for ontology representation in our approach.  

Various ontologies have been developed to capture particular fields in the manufacturing 
domain:  

- the OZONE ontology [Smi97] is devoted to constructing scheduling system, 
- the Enterprise Ontology aims to define the overall activities of an organization [Usc98], 
- the TOVE Ontology focuses on the enterprise modeling [Fox98], 
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- the “Machine Shop Information Model” is intended for representing and exchanging 
machine shop data, initially between manufacturing execution, scheduling, and simulation 
systems [McL05], 

- Process Specification Language (PSL) covers generic process representation common to 
manufacturing applications [Grü05]. 

On the other hand, ontologies like MASON [Lem06] and the ADACOR [Lei04] could be 
classified as general-purpose manufacturing ontologies. An interesting standardization initiative 
has been started by the OOONEIDA consortium establishing the framework for both the 
hardware and the software interoperability at all enterprise levels. The product data, which 
encapsulates intellectual property along with appropriate semantic information, is collected from 
the manufacturer and integrators in order to set a searchable repository and ease the work of 
related intelligent repository agents [Vya05]. The complementary work has been reported by 
Lopez and Lastra, which merged separate ontologies for mechatronic devices reference models 
(covering both the hardware and the software features) and the IEC 61499 reference model 
respectively into the ontology for the Automation Objects reference model [Lop06].  

Nevertheless, ontologies have been rarely used in combination with software agents and 
in most of the existing multi-agent systems the agents are not aware of ontologies at all since the 
information processing and reasoning are hard coded in the agents’ behaviors. Although 
important standardization work has been done by introducing the message transport service for 
sending FIPA-ACL Messages [Fou03] by defining message types, performatives protocols, etc., 
the agents are not able to semantically interpret the domain-specific content of the exchanged 
messages as well as the knowledge held by the other agents [Qiu05]. 
 
2.2.6 Knowledge Representation 
 

In order to work effectively and efficiently an agent has to maintain an internal “world 
model” of the environment in which it is embedded and to keep this model sufficiently consistent 
with the real world [Woo86]. It means that the agent’s knowledge has to be accurately 
represented in the agent’s world model. In this content the knowledge representation is used to 
define the formalization of captured knowledge using a machine-readable form. There are three 
kinds of knowledge representation: tacit, implicit and explicit. Tacit knowledge is more personal, 
context-specific, and difficult to represent and explain since it contains skills, ideas, experiences, 
etc. Implicit knowledge is mostly embedded in the agent’s control and sensory processing 
algorithms. Knowledge is explicit when it is separated from the algorithm that uses the 
knowledge [Dav94]. The well known usage of implicit knowledge is in Brook’s subsumption 
architecture for the control of mobile robots [Bro86]. Presented reactive agents do not store any 
information about the world in their memory and decide what to do based on the current sensor 
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values. Brook’s reactive agents quickly respond to changes, since there is no time consuming 
deliberation process and far less amount of information is considered. Nevertheless, the low 
flexibility of such agents in a dynamic environment, when they have to deal with incomplete 
knowledge, as well as their fragile problem solving abilities are mostly the result of the explicit 
knowledge deficiency. Moreover, in a dynamic, physical environment with real sensors, implicit 
representation can be computationally expensive and/or impractical since complete environment 
can not be observed at any time [Wass99]. On the other hand, although considered as complex 
and inefficient, the explicit knowledge is flexible and general, since it can be easily coded into 
information. The application of agents, which use the explicit knowledge for world model 
representation, can reduce the system complexity and enable system scalability especially 
through the interrelation of the agents’ world models.  

Semantic systems offer a convenient way for the representation of distributed and 
interlinked explicit as well as tacit knowledge. The usage of ontologies for knowledge 
representation, sharing and high-level reasoning could be seen as a major step ahead in the area 
of agent-based control solutions [Obi02]. The exploitation of semantics and ontologies in the area 
of agent-based industrial systems has become the hot topic in the last few years due to the 
success and good promotion of the semantic web, which is the World Wide Web extension where 
the information is given well-defined meaning, to enable better communicate between computers 
and people [Ber01]. The ontologies are considered here as an essential technology for semantic 
web development guaranteeing data and information interoperability in such extensive 
heterogeneous and content rich environment. Related to its application in multi-agent systems, an 
ontology developed to describe the NovaFlex shop floor assembly domain and used as 
knowledge source for the multi-agent system is reported in [Bar05]. Two basic categories of 
concepts are proposed: modules and skills. The interesting application of an ontology developed 
for agent-based reconfiguration purposes is reported by Al-Safi and Vyatkin [AlS07]. The basic 
ontology concepts used here, are material resource and operation. We presented the application of 
an ontology in combination with multi-agent technologies in the transportation domain by 
simulating the assembly of products [Mer08]. The reported ontology introduces agent classes in 
addition to resources, activity and operation concepts. An ontology-based interoperability 
framework for the management of a distributed industrial manufacturing environment is proposed 
within the frame of the running PABADIS' PROMISE project [Kal07]. The proposed ontology 
aims to formalize conceptual information about resources, products and processes.  

Summarizing the implemented test cases the significant improvements of the system due 
to the introduction of agent technology could be notified. Nevertheless, the deficit of real 
industrial involvements as well as applications with real-life scenarios is more than evident. The 
presented lacks of multi-agent approaches and missing standardization have been seen as main 
reasons for the weak deployment grade in the industrial community. On the other hand, these 
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shortcomings could be beaten on their own through a massive application of this technology. In 
order to make agent-based systems more reliable and more attractive we notified several major 
challenges in section 2.2.4. In this thesis, we aim to face these challenges by combining 
advantages of multi-agent and semantic web technologies and test these on “real life” scenarios. 
The importance of such a symbiosis is especially seen through the way of how the information 
could be treated and managed in the distributed environment and how the knowledge could be 
used to improve the functionality and effectiveness of a distributed system. Having a multi-agent 
architecture that requires agents able to plan their action as well as to react in real time, we are 
applying a hybrid agent architecture that implies the usage of ontologies for representating the 
agent’s explicit knowledge and world model as well as the usage of the implicit knowledge 
embedded in the low-level control for actions that require reactions in real time. Since our agent 
uses behaviors that respond only on the world model state described with facts that could not 
have uncertain nature, the term knowledge used further within this thesis will be related only to 
explicit knowledge.  

 
2.3 Planning and Scheduling 
 

The production planning and scheduling issues are of essential importance for the 
manufacturing domain today, especially due to the dynamic and competitive nature of the 
nowadays global market that needs enterprises to be adaptive, flexible, robust and collaborative. 
In order to achieve this, the introduction of completely new approaches for problem solutions as 
well as more effective and efficient decision-making techniques is required. In this subchapter we 
will give an overview of the related work and suggest some directions for improvements in these 
fields.  
 
2.3.1 Planning 
 

Process planning (PP) plays a very important role in the product life cycle by linking the 
product design with the manufacturing phase. Process planning resolves between what and how 
will be produced. As a main goal of the process planning could be identified the full automation 
of the planning phase, so that the plan generation related to decisions, which tasks and in which 
order are going to be done as well as the corresponding operation and tool selection, occur 
without any external human intervention. The process planning phase has to consider the product 
requirements (price, quantity, geometry, tolerance, material, etc.) as well as production 
constraints (machine capacity, tool characteristics, etc.). The usage of computer technologies in 
process planning – Computer-Aided Process Planning (CAPP) – has made a significant step 
forward in the direction of full integration and automation of the design, planning and 
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manufacturing phases in the computer-integrated manufacturing (CIM) environment. CAPP is 
commonly classified in two categories: the variant approach and the generative approach. The 
variant approach spreads all existing plans considering specific characteristics into related 
categories. In the case of a new product or quantity request, the most suitable PP will be selected 
and appropriately modified. It is a relatively simple and fast technique but principally done 
manually and dependending on the knowledge and experience of the workers. The generative 
approach applies knowledge-based systems and is usually combined with artificial intelligence 
(AI) techniques to generate the optimal process plan according to the part’s features and 
manufacturing requirements. This planning process does not necessarily depend upon any other 
existing plan and is usual created automatically. The following steps in generative CAPP could 
be specified: product decomposition, part/feature recognition, interpretation of part design data, 
operation specification, machine selection, tool selection, determination of processing parameters 
fixture, setup identification and operation sequencing. Due to its nature to generate the “optimal” 
plans considering current system conditions the generative process planning system meets most 
of the needs of large companies which are dealing with a number of different products, each in 
small production sizes. However, in usage are mostly CAPP systems that apply either variant 
systems or semi-generative systems, since a truly generative process planning system that meets 
industrial needs and provides a reliable generic structure, knowledge representation model and 
reasoning mechanism is difficult to develop [Zha07]. Various CAPP approaches such as the 
object-oriented, genetic algorithm (GA) GA-based, Petri net-based, fuzzy logic, neural-network-
based, feature-driven or knowledge-based approach have been reported in the literature and 
applied for solution of different problems in the process planning domain [She06]. The main 
shortcomings of those AI approaches are: knowledge acquisition difficulties, lengthy 
development time, slow and expensive in execution speed, and no existence of a general-purpose 
intelligence [Ber99]. Moreover, most CAPP systems applied today have a centralized and 
hierarchical architecture as well as off-line data processing that build all together a very inflexible 
structure and causes that plan regeneration takes a significant amount of time [Zha07]. Due to the 
lack of intelligent capabilities, such system have difficulties to automatically adapt plans 
according to the availability of resources, or share knowledge among the various planning related 
functional modules [Utp99]. Additionally, a low frequency of planning runs and difficulties in 
coping with new organizational forms of manufacturing such as product oriented or customer 
driven production, require new skills and new approaches capable to handle the shortcomings 
mentioned above [Aze00].  
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2.3.2 Application of Agents in Process Planning  
 

As a possible way to overcome the shortcomings of the decentralized architecture that 
spreads the planning process between several entities/agents, each capable to create, control, and 
observe the execution of its own plans, is suggested. The agents cooperate and coordinate their 
actions in order to effectively accomplish their plans as well as to reach the commons system 
goals. Such organization brings time improvements, since the complex problems are partitioned 
between the entities by giving each entity a part of the problem to solve instead of dispatching the 
whole problem to the central unit, what could cause difficulties especially when the data is 
voluminous and changes frequently. The distributed agent-based approach allows proactive data 
processing at the place of its origin and data exchanges are only those necessary for effective 
system functioning [Hod05]. Moreover, large and complex problem structures become more 
simple and the possible failures easier to track [Sei03]. We present some of the successfully 
implemented agent-based process-planning systems. 

An agent-based cooperative process planning system (CoCAPP) that integrates CAPP 
with CAD and CAM and demonstrates five major requirements – autonomy, flexibility, 
interoperability, modularity and scalability – is presented by Zhao et al [Zha00]. Six planning 
agents (P-agents) related to specific tasks in the planning process (such as: feature recognition, 
operation selection, machine selection, tool selection, etc.) are implemented. These agents are 
monitored by the B-agent that supplies the global state information of the problem and monitors 
the operational dependencies among the individual P-agents. The D-agent transmits the product 
design data from the CAD system. Another example of the applicability of multi-agent concepts 
for planning manufacturing processes is demonstrated at the Skoda Auto Engine Plant for 
planning their mass-production of car engines [Pec07]. The solution is based on the ExPlanTech 
multi-agent architecture [Pec02], which consists of a planning agent focused on the product 
configuration and creation of production plans for individual orders; managing agents in charge 
of detailed resource allocation and scheduling as well as conflict resolving and plan 
reconfiguration; and resource agents that are either the representation of factory hardware and 
software systems or that simulate a specific machine, workshop, or department. An approach to 
intelligent process automation, where a higher-level agent-based automation layer operates as a 
distributed planning and plan execution system that creates and runs reconfiguration sequences, is 
reported by Seilonen et al. [Sei03]. The agents form a hierarchy based on authority relations. Any 
of the agents that are representing physical or functional sub-processes can start the planning 
process. During the distributed and cooperative planning process each agent creates locally its 
own part of the overall plan and adapts it to the other agents’ plans as well. The National Institute 
of Standards has developed an agent-based platform that supports the integration of predictive 
models, process planning, and shop floor machining activities [Fen04]. The agent platform 
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includes a design agent, a group of process planning agents, the capability repository agent, and 
the manufacturing control agent. The agents have access to a knowledge base, a manufacturing 
resource database, a numerical control programming system, a mathematical equation solving 
system, and a computer-aided design system. The presented multi-agent system has demonstrated 
an approach for system interoperability and the optimization of process performances. The 
conducted and extensive literature reviews related to agent-based collaborative process planning 
were done by Zhang et al. [Zha07].  
 
2.3.3 Planning and Scheduling in the Assembly Domain 
 

Constraints set during the product design phase influence the definition of the process 
planning phase as well as the entire system design in a great manner. On the one hand, in order to 
automate the process planning generation, the product model representation has to be made in a 
way that enables understanding the designer’s intention, offer information about specific features 
(connections, definitions, constraints, etc.) that could be used for the selection of appropriate 
equipment as well as tool set-up definitions. At the same time, knowledge about the capabilities 
of the equipment could facilitate the product design and ensure its manufacturability. The ability 
to present the product model in a same way as production process and production equipment can 
support easier mapping between these three key manufacturing elements and enable easier 
optimization of both planning and execution process.  

Assembly is much more than a process where two or more parts are connected, since the 
whole process is accompanied with preceding as well as following actions (supply, 
transportation, inspection, handling, delivery, etc.). All these actions are linked and there is a high 
amount of information that has to be exchanged between the actors in order to have them 
accomplished. “Assembly model” or models must be capable of capturing a diverse set of 
information needed to describe the entities and activities associated with assemblies and 
assembling so that designers of products, assembly systems, logistic systems, supplier relations, 
field support, and finally disassembly and recycling, can have access to the information they need 
[Whi96]. However, the lack of ways to standardize and describe assembly domain knowledge is 
an obstacle to achieve an easy flow of information. This is the reason why we select the assembly 
domain and its automation as test case for our knowledge-based multi-agent concept.  

Vos elaborated major issues related to the relevance of assembly and assembly 
automation to the industry. He also notifies the importance of methods that support the 
configuration of assembly systems according to a product range and the production parameters 
[Vos01]. We modified his graph (Figure 2.4) that shows the link between product design, 
assembly processes and assembly equipment by considering also the influence of a customer 
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order on the assembly process and recently more and more on the product design (customized 
order) .  

 
 
 
 
 
 
 
 

Figure 2.4: Link between product design, assembly processes and assembly  
equipment [Vos01] 

The product order, labeled with the product type (though this is related to the product design), 
deadline and quantity, sets the key borders to the production planning process impacting directly 
the resource exploitation. This is the main reason why the product order parameters should be 
“understandable” and presented in the whole production chain, from the order over production 
until the final delivery.  

On the other hand, also the large amount of relevant data emerging from the product 
development process (material, shape, structure, etc.) has to be coordinated and integrated in the 
manufacturing process and through the whole enterprise. This especially, while in order to reach 
a sustained product development, which is seen as essential step to achieve competitive 
advantage nowadays, manufacturing systems are required to manage the product throughout its 
entire lifetime ranging from design, manufacture, operation and destruction by establishing a 
collaboration between partners from a wide spectrum of domains, resulting in various product 
data types and formats, as well as different software tools [Mos05]. However, traditionally the 
product model is geometric based and provides incomplete product definitions because besides 
the assembly geometry, the understanding of its physical effects as well as the design intentions 
(e.g. joint type) is required. The meaningful representation of product data is necessary to enable 
semantic interoperability across different application domains [Pat05]. Ontology technology sets 
clear relations among assembly components and forms features by systemizing assembly 
knowledge in product, feature, manufacturing, and spatial relationship classes and linking data in 
a way that enables automatic reasoning as well as their wide integration. Kim et al. presented the 
ontology-based assembly model that serves as a formal, explicit specification of assembly design 
making assembly knowledge both machine-interpretable and shareable at the same time [Kim06]. 
They classified assembly knowledge into a hierarchy of assembly/joining concepts, defining 
concepts embedded in assembly design using specific terms and creating a standard vocabulary to 
describe assemblies (e.g. Assembly, Part, Sub-assembly, Assembly Feature, Form Feature, Joint, 
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Joint Feature, Mating Feature, etc.). The ability of the presented ontology to capture both 
assembly and joining intents was demonstrated with a realistic mechanical assembly. On the 
other side, in order to link products, assembly processes and assembly equipment, Lohse et al. 
proposed an assembly process ontology [Loh05], which could be seen as an extension of the PSL 
ontology presented before. In contrast to Kim, whose ontology concept covers product design 
and development side, this ontology provides definitions of concepts which are relevant for the 
specification of an assembly process including a detailed product and process model. The 
structure of an assembly process is separated into three levels: tasks that define the sequence in 
which the components are assembled to form the final product: operations that define the steps 
required to put the components together; and actions that define the individual motions and other 
hardware and control related activities. The product is defined within this concept as a hierarchy 
of assemblies, components and parts linked together by liaisons whose types specify the choice 
of appropriate assembly operations. Both ontologies, although built with other intentions, have 
some mutual classes (e.g. Assembly, Part, Joint/Liaison, etc.) that could be used as merging 
points for the integration of these two concepts covering a broad range of product related 
applications. There are also some other approaches related to assembly modeling and process 
planning proposed in the literature [Zha03].  

“The use of ontologies and explicit semantics enable performing logical reasoning to infer 
sufficient knowledge on the classification of processes that machines offer, and on how to execute 
and compose those processes” [Las06], what makes them proper for the fusion with agent 
technology and to be used in the planning process. In order to reach the goal of modern assembly 
planning systems to create activity sequences that are not only feasible but also optimized 
according to one or more parameters, such as makespan, machine or tool utilization, the agents 
that are supervising a particular resource or process planning system can use the accurate 
information stored in the ontology to reason about available resources and utilize appropriate 
optimization heuristics [Las06]. To our knowledge there is very few research in the area of agile 
agent-based assembly systems. A framework for an agile assembly system has been proposed in 
[Hol95]. The ongoing work on knowledge-based automatic reconfiguration system for robotized 
work-cells, where the problem of reconfiguration is seen as a (re)planning problem and 
knowledge representation is built around the concept of ontologies, was presented by Malec et al. 
[Mal07]. The development of an ontology-based reconfiguration agent that uses ontological 
knowledge of the manufacturing environment for the purpose of reconfiguration without human 
intervention is reported by Al-Safi and Vyatkin. The created ontological knowledge model of the 
manufacturing environment is based on the MASON ontology and used by the configuration 
agent to infer facts about the environment [AlS07]. 

The application of agent technology does not bring any advantages if the used agents are 
not intelligent. Considering ontologies as an intelligent way to manage knowledge, the 
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integration of both technologies brings advantages such as extensibility and communication, 
enabling agents to agree on the meaning of common concepts they use with any other agent in an 
open environment [Gon06]. The application of both technologies on the concept that covers the 
entire life cycle of a product is required.   

 
2.3.4 Production Scheduling  

 
The scheduling of production resources is one of the key features in the current 

competitive and dynamic manufacturing environment. The scheduling has to be flexible and able 
to cope with conflicts derived from the resources shared among the production orders. The 
scheduling determines the most suitable time slot to produce something. The scheduling strategy 
that can support a fast reaction to market changes and can cope with a turbulent environment is 
considered as a one of the key issues in such systems. The task of scheduling is the allocation of 
jobs and activities to available resources over time considering relevant constraints and 
requirements [Raj06]. Its main objectives are the minimization of the production time of jobs, 
production costs, increased resource utilization, etc. Substantial research efforts have been 
devoted to developing mechanisms capable to dynamically allocate the resources required to 
support the production activities needed for fulfilling the order [Won06, Pin02]. However, most 
of the developed scheduling systems are based on centralized structures, which make 
manufacturing systems scheduling even more complicated. Due to the hierarchical and 
centralized structure, their modification is a very expensive and time consuming process. This is 
especially obvious in the cases when certain resources become unavailable or additional 
resources are introduced to the system, since their rigid structure hinders flexible redesign of the 
system. In most real-world environments, scheduling is an ongoing reactive process where the 
presence of real-time information continually forces reconsideration and revision of pre-
established schedules [Oue07]. The centralized structures, based mostly on big and complex 
databases modeled at one (central) location, often suffer from data consistency problems and are 
not always capable to carry out this dynamic rescheduling. This especially, in the cases when the 
system has to manage data and knowledge which is spread between different locations, since the 
different coordination and communication mechanisms are required in order to keep the system 
synchronized. Highly dynamic and complex systems, such as manufacturing systems are hard to 
manage with such structures. In the past several different analytical and heuristic methods 
(including GAs, fuzzy logics, neural networks, Tabu search, etc.) were applied in order to cope 
with scheduling problems and their optimization. However, being essentially centralized and 
based on simplified theoretical models, such methods have shown difficulties when applied to 
real-world situations [She06]. 
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The application of decentralized control architectures is considered as a promising 
approach to overcome the issues mentioned above. Multi-agent systems, which are based on this 
approach, are handling the complex problems by breaking them down into a number of simpler 
problems, which are distributed between agents that then join their efforts in order to produce a 
solution for the global problem. Agents cooperate and communicate together in order to achieve 
aims, which are beyond the individual capabilities and knowledge possessed by each agent. 
Nevertheless, being able to utilize parallel computation and to apply different methods for 
solving their simple local problems, the application of agent technology can significantly 
improve the efficiency and performance of the entire system. The agent concept is characterized 
by the application of a bidding mechanism that in contrary to time-based mechanisms introduces 
the economic-based evaluation or combination of these two principles [Ush03]. The Contract Net 
Protocol (CNP) is the mostly used bidding mechanism proposed by Smith [Smi80]. The agent 
that needs some service broadcasts its tender to other agents and waits for their bids. After a 
particular time, all received bids are evaluated and the best provider awarded. In order to enable 
negotiation among the agents to form different types of coalitions, an extension of the CNP based 
on an market-oriented approach is proposed [Wel95]. The CNP is combined with dispatching 
rules to solve job-shop dynamic scheduling problems [Yin07]. A further advantage of the agent 
based scheduling is its capability to handle dynamic system changes (e.g. machine breakdowns, 
rush orders, etc) [Boc04]. Being applied in a distributed environment, agents need only to 
“freeze” the part of their schedule and recalculate tasks that are related to the broken resource 
bringing the system due to their separated actions into a new evolved state.  

Two main multi-agent architectures for dynamic scheduling are reported in the literature: 
autonomous architectures and mediator architectures [Oue07]. The autonomous architectures are 
usually based on negotiation between heterogeneous units. Parunak et al. presented the AARIA 
agent architecture, where completely autonomous agents supervise physical components 
(machines, tools, transportation resources, etc.) [Par01]. Saad et al. adopted a multi-agent 
cooperative problem solving paradigm and presented heterarchical scheduling approach using a 
bidding mechanism based on the CNP to generate the production plan and schedule [Saa97]. 
Various autonomous architectures for dynamic scheduling in flexible manufacturing systems 
were also reported in [Kro99, Gol98, Oue98]. The main advantages of the autonomous 
architectures are reduced complexity, integrity, cost efficiency, high flexibility, and a high 
robustness against disturbances. The lack of predictability and global perspective are major 
drawbacks of this architecture. This kind of architecture is also characterized with an increased 
amount of communication, since the agents have to exchange more messages in order to have an 
accurate environment representation. Shen and Norrie proposed the mediator architecture 
consisting of various physical agents, which use the services of a mediator agent to coordinate 
their activities [She98]. There are also few other approaches described in [Bon97, Sun01, 
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Won06]. The advantage of scheduling through mediation is that the mediator possesses sufficient 
knowledge about its coordinated agents and can coordinate their activities ensuring therefore 
global consistency. The main drawback of this architecture is its “centralized” structure with 
mediator agent as its bottleneck, whose failure can cause a failure of the whole system.  

Extensive surveys of dynamic scheduling in the manufacturing environment considering 
also agent-based systems were done by Babiceanu and Chen [Bab06] as well as by Ouelhadj and 
Petrovic [Oue07].  

 

2.3.5 Integration of Process Planning and Scheduling 
 

Process planning and scheduling are highly related, because when the planning ends the 
scheduling phase starts. However, being mostly done offline the process plan generation often 
does not consider the current status of the shop floor. There are a number of factors that could 
initiate uncertainties in the production system such as the existence of complex and reentrant 
products, unreliable machines and stochastic yields, where small disturbances lead to a disruption 
of the manufacturing process, often causing order disruptions and consequently changes in the 
plans and delivery problems [Aze00]. The process plan restrictions and shop floor constraints 
have to be considered in the scheduling phase that could become a very complicated and time 
consuming process, if applied in a dynamic environment. In order to make more realistic and 
applicable plans, the integration of the planning and scheduling phase is necessary. Nevertheless, 
the traditional approaches execute these processes separately, mostly ignoring the condition of 
resources on the shop floor (e.g. machine workloads, etc). That leads to the under- or over-
utilization of certain resources or even that some of the process plans perhaps cannot be executed 
requiring alterations or replanning [Kum06]. A lot of work has been done in the past to optimize 
and integrate process planning and scheduling in the area of manufacturing and the resulting 
approaches can be classified into the following categories: centralized optimization algorithms, 
close loop optimization, distributed process-planning approaches and agent-based approaches 
[She06]. In the agent-based approach, all related actions are done by agents that are capable to 
communicate, negotiate and accomplish specific tasks. An integration system that consists of a 
manager agent, a process sequence agent, a machine grouping agent, a scheduling agent, an 
optimization agent, a number of product agents and various resource agents is presented by Lim 
and Zhang [Lim04]. Agents are classified into two categories: execution agents and information 
agents: and each agent has two types of objectives: global objectives (e.g. to integrate dynamic 
process planning and scheduling, to dynamically optimize the utilization of manufacturing 
resources, etc.) and local objectives (e.g. bid and win the jobs announced by the machine 
grouping agent…). Wong et al. presented an approach where the selection of the schedule and 
allocation of manufacturing resources is achieved through negotiation among the part and 
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machine agents by using hybrid CNP (negotiation on a fictitious cost with the adoption of a 
currency function) [Won06]. Two MAS architecture, a simple one consisting of part and machine 
agents and a hybrid-based architecture that involves in addition a supervisor agent, were tested 
demonstrating the ability of the hybrid approach to provide solutions with a better global 
performance. Tehrani et al. presented a multi-agent architecture of an integrated and dynamic 
system for process planning and scheduling for multi jobs. The alternative manufacturing 
processes are presented by the process plan networks and their heuristic search algorithms are 
combined with the negotiation protocols, in order to generate suitable process plans and 
schedules in the dynamic manufacturing environment [Teh08]. A comprehensive state-of-the-art 
review in the area of manufacturing process planning and scheduling integration was done by 
Shen et al. [She06].  

However, one of the main shortcomings of the architectures mentioned above is the lack 
of interoperability, since the applied methodologies separate planning activities (e.g. process 
planning) from executing activities (e.g. production control and scheduling), creating a gap 
between the involved systems. The problem in current distributed systems is that they are still 
tightly coupled from the point of view of automated gathering and integration of data, 
information and knowledge, being programmed with the focus on performing particular tasks 
rather than on interoperability and openness [Obit08]. Shen et al. defined the integration of 
process planning, manufacturing scheduling, and control as one challenging research topic where 
much more attention has to be set on the complexity analysis and formal modeling of such 
integration [She06]. The assimilation of different knowledge sources is considered as an 
important problem that has to be solved being marked as not easy task due to different 
representations, foundations, and levels of abstraction of various knowledge sources [Bos99]. 
Being mostly applied in heterogeneous environment, agent has to understand its as well as the 
knowledge of related agents in order to reason about it, prior to making decisions. Moreover, 
considering that future distributed manufacturing systems will need to handle a great diversity of 
autonomous agents and mechatronic devices interacting intensively, there is as strong need that 
all components understand the exchanged information and know how to communicate [Chr07]. 
According to Finin et al. for software agents to interact and interoperate effectively three 
fundamental and distinct components: (i) a common language; (ii) a common understanding of 
the exchanged knowledge; and (iii) the ability to exchange whatever is included in the previous 
two; are required [Fin97]. The usage of machine-interpretable semantics (ontologies) to describe 
the components of manufacturing systems enables other intelligent components (agents) to 
perform reasoning and infer sufficient knowledge to interact as well as to overcome current 
interoperability barriers [Las06].  
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This is the reason why we used the semantic technology in this thesis to solve the 
interoperability problem in the multi-agent domain, solving directly and indirectly the 
interoperability problem in all the domains (including control, planning and scheduling) which 
are managed by agents. 
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3. The KASA Environment 
 

“Beauty is in the eye of the beholder, and 
 information is in the head of the receiver.” 

Dretske 
 

3.1 Introduction 
 
An agent is an intelligent entity placed in particular environment in order to supervise 

or execute specific actions. It is able to perceive the environment through sensors and act on it 
with effectors. Based on its responsibilities and observations, an agent has to constantly make 
decisions that again could influence the environment as well as its state. An agent has to be 
aware of the results of its actions in order to be able to perform subsequent activities or repeat 
the whole process over again (Figure 3.1). Nevertheless, while its actions could have 
beneficial as well as negative effects to the agent’s existence, the fundamental question here 
is: how should such an agent decide what to do? As possible answer, here should be 
considered facts and states required to start particular actions. The real and accurate 
information about the environment could be considered as key precondition, needed by the 
agent in order to make proper actions efficiently and effectively. Consequently, for an agent it 
is of crucial importance to “understand” received information from its surroundings and 
related to its meaning select correlated behavior that will influence environment over 
effectors. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Correlation of the agent and its environment 
This indicates the importance for an agent to mirror and transform its environment into an 
understandable mental representation. This representation is called world model and can be 
defined as the agent’s internal representation of the external world or its domain of 
application. The representation is, within this context, defined as relationship between two 
domains where the first is meant to “stand for” or take place of the second, being more 
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concrete, immediate or accessible in some way than the second [Bra 04]. Such a world model 
represents objects, activities, and states embodying the agent’s knowledge about its 
surroundings. As said in the previous chapter, we will use an ontology to formalize the 
agent’s knowledge. Consistent semantics assure the accuracy of each agent’s world model 
with respect to the real world. Providing an ontology of its surrounding the agent is equipped 
with an up-to-date representation of its environment built from sensor data and 
communication with other agents. From the viewpoint of inter-agent interactions, the 
explicitly defined and commonly accepted ontology is an indispensable tool for ensuring 
interoperability between agents in the sense of providing the agents with common 
understanding of the knowledge exchanged during inter-agent communication. An ontology 
can also capture actions and events in a uniform and processable way so that they can be 
recorded in time and further analyzed. However, being used for diverse tasks agents have 
different structures of their world models. This depends mostly on their application domains 
but is also strongly influenced by the agent decomposition approach (physical or functional). 
Consequently, depending on their application domain, agents will have different capabilities 
and responsibilities. To define an agent, certain facts need to be specified about the agent: 
domain of application, tasks, environment, perception abilities (i.e. ways to update its world 
model: sensors, communication…), as well as agent behaviors in particular situations.  

A system is defined as “objects and events connected and controlled in time and space 
in order to obtain intended functions” [Hol06]. Considering a multi-agent system as a set of 
related entities integrated in a complex society, where each entity has to follow particular 
norms and use specified mechanisms to interact with each other pursuing its own goals, there 
are particular system characteristics (e.g. stability, security …) that have to be respected in 
order to achieve a common system goal. Moreover, the agent technology embodies a large set 
of decisions and interaction capabilities, which are able to create a vide variety of system 
behaviors and when not designed carefully could lead to unintended behaviors or to the 
achievement of intended behaviors in an inefficient way [Bus04]. This all indicates that 
particular system states which are related to the global aims have to be integrated and 
considered when designing the agent’s world model. A manufacturing system, which is made 
of subsystems that could be also complex systems themselves, being mostly influenced by 
extremely turbulent conditions and characterized with a high number of system states, is a 
typical example of a complex environment. The introduced multi-agent framework, used to 
manage particular parts of this environment, should be able to handle the complex dynamics 
of the manufacturing environment allowing its members to coexist and perform activities that 
should bring this system into an optimal state related to its current conditions. Having a multi-
agent architecture which is applied in the manufacturing environment to the assembly domain, 
we will analyze the manufacturing environment and address its relation to the assembly 
process in the next section. We will define agent types needed for its proper functioning, 
addressing also responsibilities and activities of each agent type. At the end of the chapter the 
developed agent architecture will be explained in detail. It is important to mention that the 
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developed multi-agent architecture needs to satisfy requirements of the assembly domain, but 
should be applicable to most of the manufacturing environments.  

 
3.2 A Manufacturing System 

 
A manufacturing system is defined as “a collection or arrangement of operations and 

processes used to make a desired product(s) or component(s)” [Bla91]. It consists of 
interrelated elements (people, equipment, sub-systems, etc.) introduced to cooperatively 
achieve the overall objective defined as transformation of raw material into commercial 
products. Manufacturing systems could be categorized according to the type of production 
process to: discrete manufacturing that is concerned with the production of solid products and 
the process manufacturing that is related to the production of shapeless materials. Further, 
discrete manufacturing systems can be classified based on their production quantity to:  

- mass production, which is used for producing or processing of extremely large 
volumes products without interruption and characterized by a production that runs 
permanently being executed by a series of machines that receive materials through a 
closed transfer system,  

- batch production is meant for the production of medium size quantities of one type 
products or parts (shoes, books, inks, furniture, etc ) having products produced in 
regular intervals, but with a production rate that is usually higher than the demand rate 
(in order to produce the next batch the equipment mostly must be stopped and re-
configured causing inefficient loss of production time known as 'down time'),  

- job-shop production that is characterized with small or very often size-one product 
volumes, being mostly adjusted to specific customer requirements and able to produce 
a wide range of products.  

Within the production process one can also distinguish operations which are adding value to 
the product such as:  

- processing where the properties of material are changed, and  
- assembly where several product parts are combined into one.  

There are also operations that add no value to the product but have to be performed in order to 
set preconditions for other operations (handling, fixing, etc.) or to test results of particular 
operations (inspection) [Bus04]. The processing and assembly operations are often interlaced 
during the production process and looped until the final product is being reached (Figure 3.2). 
Nevertheless, manufacturing systems are not only related to the production process but also 
include and manage subsystems that influence the production such as ordering, supply, 
shipment, etc (Figure 3.2). In addition, we noticed the importance of control, planning and 
scheduling subsystems in the previous chapter. Each of the subsystems mentioned above has 
to be supervised and its data, states and parameters considered, with much of this information 
needed not only in their original subsystem, but also in the other subsystems, such as e.g. 
quantity information is required through the whole production chain. 
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Figure 3.2: The manufacturing system 
This becomes more complicated when the number of products, services, subsystems, and 
cooperation partners increase. Adding to this, requirements on manufacturing system to react 
quickly and competitive to customer request, to maximize resources utilization, to rapidly 
absorb system failures or to rash adapt their configuration on new products, etc. one can see 
how complex this system is and how a disturbance or an unexpected change in one part of it 
can affect any other part or even the whole system. A better coordination between subsystems 
would reduce the uncertainties and ensure making proper decisions. This points out the vital 
importance of an uninterrupted information flow between the manufacturing subsystems as 
well as their easy integration and their ability to “understand” this information, since this can 
improve the manufacturing system agility and its real time responsiveness. The KASA is 
designed to support the job-shop production covering initially the assembly processes but 
being able to support processing as well. The architecture is focused on a clear 
decentralization of the manufacturing system intending to reduce its complexity and increase 
agility.  

 
3.3 Layered Manufacturing System Architecture 

 
In order to reduce its complexity, the control of a manufacturing system can be spread 

in several “hierarchically” ordered layers. The layered system structure enables its functional 
decomposition into subsystems, which can then be easily further decomposed but also 
integrated and managed in bigger systems as well. Moreover, the entities within particular 
layer can work independently to a certain point and their failures do not necessarily have to 
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affect the other neighboring entities or the whole system. During the layered structure 
specification, besides the fact that particular subsystems logically symbolize some layers 
(planning - planning control layer), we considered that particular decisions have to be made in 
a real time requiring observation of a limited environment in contrast to decisions that require 
a global view without a special time limitation. The introduction of layers limits their 
responsibility and planning perspective, improving system performances and simplifying the 
concept.  

We specified four layers: management, planning, scheduling and executive layer 
(Figure 3.3). Their functions and responsibilities are listed as follows:  

 

Figure 3.3: The layered system structure 
- The Management Layer is responsible for entire system stability and functionality. It 

supports production and resource initialization as well as their determination. It is also 
concerned with the communication with the external environment and provides 
solutions for complex problems related to the global environment. It accepts orders on 
a routine basis.  

- The Planning Layer links process planning with product design. It is basically 
concerned with the sequencing of process steps, identification of product types and 
quantities to be produced. It defines equipment and resources that could be used and 
ensures that the parts or components required for the production are available and the 
final product delivery dates not exceeded. The shop floor layout is also defined on this 
layer.  
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- The Scheduling Layer is concerned with the synchronization of production needs with 
available resource capacities. The goal is to reach the internal deadlines that are set on 
the planning level. This layer is responsible for negotiating with the resources, the 
tasks as well as parts, tools, and product allocation between resources.  

- The Execution Layer is related to the physical job shop equipment. On this layer, the 
production tasks are executed considering the resources’ constraints and abilities, their 
performances measured and if a failure or disruption is diagnosed, the scheduling as 
well as management layer is informed. Also specific activities related to the execution 
of particular actions (i.e. pallet routing, removing, fixing, etc.) are coordinated on this 
layer. 

Such layer structures enable that related layers can communicate avoiding the unnecessary 
“stage by stage” procedures. The presented structure assures clear definitions of each layer 
role in the system as well as associated tasks that have to be done in order to achieve common 
goals. This further enables the smooth creation of related agent classes and mapping of 
ultimate system goals to these agents. Moreover, in order to enable easier decomposition and 
structuring of manufacturing goals and their linkage to related agents classes, we split one 
customer order in four layers. An order is composed of related product orders, which further 
consist of several work orders where each work order require execution of connected tasks for 
its accomplishment (Figure 3.4).  
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Figure 3.4: Order decomposition 

In this context, order represents a set of products ordered by a customer, which specifies due 
date as well. Product order is defined by the type of the product, its quantity, design e.g. 
color, etc. Work order integrates all tasks that have to be done to make one subassembly for a 
particular product. Each operation done within one particular product order is called task (e.g. 
transport of a first part from storage, transport of a second part from storage, as well as the 
welding of these two parts are three tasks to be done to make one subassembly). The 
managing of each decomposed order layer is coordinated between particular agent classes. In 
the next section, we will present the resulting multi-agent system.  
 
3.4 The Multi-agent System 

 
We developed a framework for agent systems based on the hybrid structure, in which 

every agent can influence any other agent’s behavior when needed and where each agent 
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manages its own activities based on its local state or on the information (message) received 
from other agents. As a result the system behavior is not only reflected by the skills of one 
agent but also evolves from the collective behavior beyond individual agents. In the presented 
architecture, the agent is an autonomous semantic entity having specific tasks and knowledge 
about its domain of application, about strategies that can be used to achieve a specific goal, 
and about (other) relevant agents involved in the system. Considering the manufacturing 
domain as a complex system whose proper functions can be represented with a mixture of 
physical and non-physical components as well as relations between them, we combined both 
functional and physical decomposition approaches to create agents. The manufacturing 
components are “agentified” to implement a behavior that represents the manufacturing 
component objectives and functionalities, with each agent being responsible for carrying out 
different specific functionalities. We used the functional decomposition approach to create 
agents responsible for system support, process modeling and task scheduling (Figure 3.3), 
applying this approach to each of the first three layers and generating particular agent types 
for each layer.  

 
The Contact Agent (CA) is related to the Management Layer and according to that it 

has responsibilities that encompass organizational and supervisor functions. The CA is 
created at the start-up of the system and it is always active. It is concerned with the system 
stability and in the case that one part of the system collapses, this agent considers its influence 
on the system performance and, if significant, undertakes particular steps in order to bring the 
system back into the optimal state. Its further responsibilities are to receive a customer order 
and create one Order and Supply agent for each related product order. This agent also creates 
an agent for each new resource introduced in the system. After the order was accomplished or 
particular resource removed from the system, the CA determinates the related agent. 
However, having only one instance of this agent for the whole system and considering it as a 
possible single point of failure, the replication technique [Mel05] and replication service 
provided with used agent platform [Bel07] can be applied to enhance agent’s failure tolerance 
level (more about the system failure tolerance in the Chapter 5). 

 
The Order Agent (OA) captures the goals and tasks of the Planning Layer. The OA is 

responsible for accomplishment of one product order, respecting due dates and the like; and 
handling customer requests for modifying or cancelling their orders. The essential information 
for an order agent is: type of product, the production deadline, quantity, and the priority of the 
client. Having the knowledge about all products corresponding to a single order, this agent 
combines the ontology-based model for a particular product together with other information, 
sequences this into work orders and sends it to the supply agent. Based on this knowledge and 
contacting the storage, the OA checks if all parts and materials required for execution of a 
single order are available. During the production, this agent collects also information 
concerning the status of current product orders or the system’s performance. The OA is 
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responsible for loading products into the system when a product order reached the system and 
for unloading products from the system when all of their processes are finished. 

 
The Supply agent (SA) maps the functions of the scheduling layer and has such name 

since it “supplies” the job shop with tasks. The SA is in charge for coordinating the 
production execution in order to achieve the best possible production results, including on-
time delivery, cost minimization, and so forth. It also manages the movement of related 
product order’s subassemblies and materials across the job shop. After the OA decomposes 
the product order into work orders, they are forwarded to the SA. Using the ontology and 
taxonomic relations specified in the product definition (Figure 3.16), the SA extracts tasks 
from work orders and schedules the ones that have to be completed at first. After that, the SA 
initially sends requests for bids to all machine agents that have the capability to process the 
first task. The interested machine agents respond with their bids. Each bid contains an 
estimated queuing time and finishing time for the requested operation. After collecting the 
bids, the SA evaluates the bids and selects the best one. When the related machine is 
identified, the agent negotiates with transport agents to route the task there. Whenever a 
current task is completed, this agent sends bid requests for the next operation. This bidding 
procedure continues until all the requested features of a job are finished. When the last task in 
the production process is finished, the agent sends the notification to the OA.  

 
The physical decomposition was used to create the Machine Agents (MA), which are 

related to the Executive Layer. MAs represent manufacturing resources (typically a machine) 
providing particular processes und services. They play an important role in the system since 
they are the “hard workers”, whose effective functionality ensures normal system 
functionality. These agents have knowledge about their particular domain of application. The 
provided services by the resource are registered in Directory Facilitator so that the SA can 
easier find out suitable resources. The machine agent manages its local scheduling and 
negotiates with the SA about supply about free timeslots in which the requested operations 
can be performed. These agents collect the knowledge about all possible processes that can be 
provided, materials to be used, a list of geometrical features as well as the feature 
relationships, tools to be used to produce the feature and tolerance and surface quality 
requirements. A storage agent control reserves of products, parts and materials on the shelves. 
Machine agents update their knowledge permanently to ensure the existing record is kept up 
to date.  

 
3.4.1 Testbed 

 
As a testing platform we use the “Test-bed for Distributed Holonic Control” at the 

Institute for Automation and Control, Vienna University of Technology (Figure 3.5). The 
Testbed architecture consists of an automatic storage system with a handling unit for the 
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extraction of the parts, a pallet transfer system with redundant paths, the industrial robot for 
machining and assembly tasks as well as a portal robot for the final assembly. Robots and the 
handling unit are considered as entities able to perform a certain operation.  

Figure 3.5: Test-bed for Distributed Holonic Control 
Corresponding MAs register their services in the DF (will be explained later) during start-up. 
Each such production resource has an agenda, which is used to store the information about 
unfinished assigned tasks. Based on available knowledge the MA decides when and how a 
specific operation from the agenda will be performed. However, tools are also represented as 
a component required in order to perform particular operations and related to that the setup 
and the machining times as well as removing and handling times for each particular operation 
are covered in the ontology. The total processing time for one task is calculated as follows:  

Ttasktotal=Msetuptime+Tchangetime+(Pmachiningtime+Phandlingtime)* Q (3.1) 
where Ttasktotal is the tasks’ total processing time;  
Msetuptime is the machine setup time for a particular operation;  
Tchangetime is the tool change time; 
Pmachiningtime and Phandlingtime are part machining and handling times and Q is the batch size. 
The total processing time for all assigned tasks Tagendatotal is:  

∑
=

=
n

i
tasktotalagenda iTT

total
1

)2.3()(  



CHAPTER 3. THE KASA ENVIRONMENT    
 

48

where n is the number of tasks in the 
agenda. The MA controls the machine 
capacity and availability. The capacity 
limits the number of tasks that a specific 
resource can handle at a given time. 
Since each resource has a restricted 
capacity, the MA takes care that Tagendatotal 
does not exceed the capacity. The MA has knowledge about each operation that could be 
performed at a machine and after it receives the Call for Proposal (CFP) message from the 
SA, the Tagendatotal, which also includes the time of the task from CFP, will be calculated and 
sent back as the bid. In the case that full capacity is reached, MA will not answer to the Call 
for Proposal (CFP) messages sent by the SA until its capacity become undermined or 
exhausted. However, when the resource starts with the execution of a particular task, its status 
will be set to busy and it will be not available for the next tasks until the previous one is 
completed. The MAs are using dispatching rules for sequencing the tasks allocated to their 
machines (the procedure will be explained in the next chapter). After the machine has finished 
the current task, the MA loads the next task that has the highest priority (Figure 3.6), if there 
is a confirmation from the Storage Agent (STA) that the parts required for that task are on the 
way. In this case the machine will be kept busy so that it is ready to process the highest 
priority job as soon as its parts arrive. Otherwise, the next task with lower priority but 
available parts will be loaded.  
 
Components of the pallet transfer system and related agent classes 
The main components of the pallet transfer system and related MA classes are: 

• The conveyor belt which delivers items from one place to another. It is controlled by 
an agent that has to have knowledge about all conveyor characteristics (speed, length, 
direction, etc.). This agent also takes care that the number of pallets on the conveyor 
doesn’t exceed the optimal number.  

• The index station (Figure 3.7) that fix the pallet in a defined position for the handling 
units. Its agent is informed by the relating handling unit, which pallet to stop in a 
particular moment as well as when to release it.  

Figure 3.7: Index Station unit 
• The identification unit (RFID) for the identification of passing pallet units. The agent 

sends this information to the related intersection unit.  

Figure 3.6: Priority based scheduling 
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• The intersection unit, used as a common term for the place where three conveyors 
cross each other at the same level. Two different kinds of intersection could be 
deferred:  

o The Diverter  (Figure 3.8) which receives items coming from the input 
conveyor and according to their destinations routes them to one of the two 
output conveyors. The related agent has to have an accurate system 
representation in order to be able to route the pallet correctly.  

Figure 3.8: Diverter unit 
o The Junction (Figure 3.9) which receives items coming from the two input 

conveyors and according to the priority of order decides which pallet should go 
as first to the output conveyor.  

Figure 3.9: Junction unit 
The major transportation tasks are: to deliver a part from the storage, to carry an unfinished 
subassembly between the machines, and to remove the finished product from the system. The 
intersection units as well as the index station units additionally have sensors and stoppers for 
the regulation of the pallet movements. The main agent classes of the pallet transfer system 
are presented in Figure 3.10.  

Figure 3.10: The main agent classes of the pallet transfer system 
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Figure 3.11: Introduction of a new Product Orders 

Since agents in our architecture do not have a global overview, decisions can be short-
sighted. To avoid this and to facilitate the communication and coordination between the SA 
and the MAs, we decided to adopt a service agent provided within the used JADE platform 
[JAD08], the Directory Facilitator Agent (DF) [She99]. All resources contained in the 
platform should have their services registered at the DF. In case that SA or MA need to 
communicate or negotiate with other agents wherever in the system, these agents should 
contact the DF to find (the addresses of) the related agents and after a positive answer 
communicate directly with those agents. This approach significantly reduces the number of 
messages in system, since messages are only sent to a limited number of agents instead of 
being broadcasted to all agents. 

 
3.4.2 Introduction of new Orders 
 

Orders, placed by customers, are received by the contact agent. They contain 
information about the type of ordered products, quantities, and sometimes delivery dates. The 
CA splits these orders into product orders that are related to particular product type and for 
each of them creates one responsible OA and SA, respectively. The OA is skilled to produce 
the assembly plan for each product that can be produced by the factory plant and contains all 
the knowledge to produce the product, namely the product structure and the logistic process 
plan (Figure 3.11). The OA uses the ontology-based product model to extract the required 
parts and material for the production and contacts the storage agent to check their availability. 
If the remaining stock quantity is too short, it generates supplying order, forwards it to the CA 
and waits until the reception of required material or parts is confirmed. In the case that enough 
material or product parts are on 
stock, the OA uses the knowledge 
about the product, its parts as well as 
relationships between them to 
identify operations to be done on 
these parts and to generate work 
orders to be completed to finish this 
product. It forwards generated work 
orders to the SA with the request to 
start the negotiation with machine 
agents about supply. If the delivery 
date is provided, the OA uses this 
information to set the production 
priority. The SA sequences the 
related tasks from work orders, 
selects the first task necessary for 
work order finishing and specifies the related operation. In order to get list of available 
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resources for this operation, it sends the REQUEST message to the DF Agent with a 
specification of the required services. Because the DF agent covers only its platform, in order 
to be able to offer reliable information, this agent builds a network of DFs – the so called DF 
Federation [Tha04, Mer08c]. It detects services offered on other platforms. After the DF 
Agent sent the INFORM message to the SA about 
available resources, this agent starts the CNP and 
sends the CFP to all resources, respectively MAs, in 
the list (Figure 3.12).  
Each MA calculates its agenda (the work that is 
already assigned to its machine) and sends the total 
processing time for all assigned tasks (Tagendatotal) 
with a PROPOSE message back. The processing 
time of the task from CFP is also included in the 
proposal since one machine can perform the same 
task quicker than other machine (e.g. different 
machining speed). The SA chooses the best 
proposal (resource with the lowest workload) and sends the ACCEPT_PROPOSAL message 
to the related MA with more precise specification of the operation. Since the destination of 
the task is known now, the SA can start to supply the resource with required parts/material. In 
the case that there are some parts to pick up, the first destination will be the storage. In order 
to find the best suitable pallet for transportation, the SA has to contact all available pallet 
agents (PA). The SA will again contact the DF Agent with the REQUEST message and 
“Transport” as a service specification. All pallets which are currently performing transport 
operations have their status set as busy and due to a specific implemented behavior are 
immediately deregistered from the DF Agent service lists. This state will be changed as soon 
as the pallets become free again. However, after the SA has received the list with available 
pallets, it starts the CNP and contacts all PAs. Having always accurate information about the 
pallet position, the PA calculates its distance to the destination and sends this as an answer 
[Mer08]. The nearest pallet to the destination will be chosen and the storage informed about 
its arrival. After it supplies the pallet with goods, the storage agent notifies the SA about 
supply and the SA forwards the information about the approaching pallet to the related MA. 
This information is very important because the operation with the highest priority will be 
loaded only if the parts are already available or on their way. On the way to the destination, 
the pallet will be routed based on shortest path algorithm as described in [Mer08]. When the 
first task was finished, the SA starts the execution of all others using the same procedure. At 
the end of the production order execution, the SA passes the relevant information to the order 
agent. The OA forwards this information to the CA, which waits until all product orders 
related to this customer order were accomplished to inform the customer about its shipment. 

 
 

Figure 3.12: CFP Message 
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3.4.3 The Ontology 
 
„Finding ways to reduce time and cost for getting high-quality and accurate 

knowledge through advanced information systems is a hot issue in current distributed 
information environments“[Qiu05]. The ontologies and embedded semantics can be used to 
formalize the knowledge representation and to achieve overall „understanding“. Individual 
agents, having their own objectives, knowledge and skills, may have different world models. 
In order to ensure correct understanding of the exchanged information agents must have the 
same presentation of the environment, or at least that part of the shared environment about 
which they are exchanging information with each other. We are using the ontology to provide 
semantic understanding among software agents. The ontology-based assembly model was 
presented in [Kim06] and serves as a formal, explicit specification of the assembly design so 
that it makes assembly knowledge both machine-interpretable and shareable at the same time. 
We use the same concept (Figure 3.13) to link product designs, assembly planning processes 

and required assembly equipment together. The ontology based product model is used to 
extract the production/assembly operations from the product design and link particular tasks, 
which have to be performed for the production/assembly of a product, to particular resources. 
Each task consists of a series of actions that can be executed by one or more resources. These 
resources as well as their control are represented in the ontology. The connection to the 
product order is made through the type of ordered product, quantity, which defines the 
number of parts that have to be available to start the assembly process, and due date that 
defines the priority of the order. 
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Figure 3.13: Decomposition of assembly tasks and their link to resources 
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As a basis for our ontology we take the “Machine Shop Information Model” [McL05] 
developed at the National Institute of Standards and Technology (NIST) as a part of efforts 
that support the development of standard data interfaces. This information model is intended 
to be used for representing and exchanging machine shop data, initially between 
manufacturing execution, scheduling, and simulation systems. The “Machine Shop 
Information Model” does not include any assembly specific concepts and constraints. Our 
ontology is also heavily influenced by the OZONE ontology [Smi97], the Enterprise Ontology 
[Usc98] and the ADACOR ontology [Lei04]. Our proposal is built on three basic layers: 
product, activity and resources (Figure 3.14). There is some correlation between our ontology 
and the FABMAS ontology [Mön05] as well as the MASON ontology [Lem06], which are 
both also based on three layers.  

 
Figure 3.14: Three Ontology layers 

A product is presented as a hierarchy of subassemblies and parts together with all their 
properties and relationship between them. Parts are defined as components, described by a set 
of attributes, properties, constraints and relations to other parts. A subassembly is a non-
empty subset of parts that either has only one component or is such that every part has at least 
one surface contact with another part in the subset [Rab93]. The relationship between parts 
within a subassembly defines operations that have to be done to connect these parts and 
represents how these subassemblies should be put together to complete the product. An 
operation is defined as a discrete set of actions which leads to a certain change of state in or 
on the part. In our framework, we distinguish two types of operations: 
manufacturing/assembly and transportation operation. 

An activity is the basic action, which specifies how the product state is changed. An 
activity describes how the product is going to be produced and how its production relates to 
all other entities in the production environment. Our concept describes the order activity as a 
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bunch of product orders that split up further into sets of work orders, each work order being 
described as a list of tasks. In order to simplify the operation generation of the process plan, 
we adopt a top-down function model of the product [Zhu00]. Each product type is described 
through its own process plan. A process and logistic plan in the assembly tree specify the 
sequence of manufacturing or assembly operations which have to be performed in order to 
make a product. Each operation could be performed by different resources and consequently 
can be accompanied by related transport operations, making all together work orders (steps). 
Assembly phases are presented as levels in the process plan, which means that parts from the 
lower level will be assembled first (Figure 3.15). 

Figure 3.15: Logistic plan in the assembly tree 
 

There is also a hierarchy within the same level and between work orders, where is 
distinguished which part/subassembly should be transported and assembled before others. We 
assume that each assembly operation is performed by a different resource which means that 
between two assembly operations it will be necessary to transport a part/subassembly to 
another destination. In the case that two assembly operations were performed by the same 
machine, one after another, the SA that manages the assembly will delete this transport 
operation. 

A resource is a physical component able to perform a certain action. However, since 
this component embodies agent as its control part, we consider also the agent concept as 
integral resource element. 

The agent interaction with the ontology in the background ensures that when an agent 
extracts relevant information from a message it understands the meaning of the terms in the 
message and the way this terms are combined in the statement. The presented concept 
distribution and ontological representation of a production process improves the way 
components communicate and exchange information in the manufacturing environment. Our 
ontology covers the environment structure, characteristics, states and components 
interrelationships enabling the related agents to interpret their environment, reason about it 
and make right decisions (Figure 3.16). Especially the structure of the activities layer, which 
has to serve as a link between the product layer (what is going to be produced) and resource 
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layer (who is going to do this), fulfils its purpose by integrating the production planning and 
scheduling as well. The ontology-based concept of the product production/assembly described 
with Steps ensures the exact decomposition of the product orders to related work orders and 
further associated tasks and their correct indexing. This is particularly supported with the 
integrated planning relationships needsPredecessor (Step) and isFollowedBy (Step) that 
enables the SA to reason when and why to start particular task allocations, which are know as 
scheduling activities.  

Figure 3.16: Assembly System Ontology 
The important advantage of the introduced ontology-based approach is the 

achievement of the preconditions for easy assembly and disassembly of the product. Our 
knowledge-based system does not need to be told, how a problem has to be resolved (i.e., 
which and when particular tasks have to be done), but the concept and the goal is described 
instead. The system decides on its own how to achieve the goal. 

 
3.5 Agent architecture 

 
Our architecture consists of agents which are acting based on their knowledge. Each 

agent is an autonomous entity and has its domain of application. The agents have to observe 
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their environment in order to possess its accurate representation (e.g. by sensors…). Having 
only a partial view of their surroundings, the agents are forced to communicate and cooperate 
with other agents in order to overcome the lack of a global perspective. Both ways, sensor and 
messages, of the agent’s dealings with its surroundings have to be considered when designing 
its architecture. Since the physical decomposition approach presents combination of 
functional (agent part) and a resource part, it will be discussed in the rest of the chapter as 
representative case.  

Considering the strict 
requirements of the manufacturing 
environment for real time action, our 
architecture splits the control of a 
manufacturing resource to the low level 
control (LLC) and high level control 
(HLC) (Figure 3.17). These levels are 
organized in a hierarchical way, where 
the HLC is represented as an agent, 
which uses the world model 
representation to coordinate the actions 
of a manufacturing resource and to 
delegate specific tasks to the LLC 
controlling indirectly its execution. On 
the other hand, the LLC governs the 
particular actions of the underlined 
physical system by collecting and 
processing the information from sensors. Based on the result, it performs some “reflex” action 
or informs the HLC about an event.  

 
3.5.1 The HLC Architecture 

 
The HLC level, which is also known as the decision-making level or agent, is capable 

to govern the interaction with the external world and to understand, depending on the 
decomposition approach, different types of information that can be observed in the external 
material world. Here the decisions are made when and how, but also which actions are going 
to be performed at particular time. This level is able to reason about its own processes, 
characteristics, capabilities and goals. Based on the success or failure in achieving these goals, 
the decision about future steps will also be made on this level. The agent needs to have 
knowledge about its domain of application, about strategies, which can be used to achieve a 
specific goal, and sometimes knowledge about the (other) agents involved in the system. We 
consider an agent as an entity that has a set of protocols, which govern the operations of the 
manufacturing entity, a knowledge base, an inference mechanism and an explicit model of the 

Figure 3.17: Control architecture of a component 
(conveyor) 
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Figure 3.19: A simplified rule 

problem to solve (Figure 3.18). The 
knowledge base stores the domain-specific 
knowledge. It is composed of an ontology 
and a set of problem solving rules. The 
crucial element in the decision component 
is the rule-based system, which applies 
declarative knowledge, expressed in a set 
of rules, to regulate the agent’s behavior. 
The knowledge base together with an 
inference mechanism is the “brain” of the 
agent. The “inference” presents a process 
that indicates the generation of new conclusions from existing knowledge. The commonest 
basis for inferencing is rule considered with if-then statements applied to the knowledge base. 
If all defined conditions for a particular rule on the left hand side of the rule are satisfied the 
rule’s actions on the right hand side will be executed. The inference engine recognizes and 
matches which rules in the knowledge base can be satisfied by provided facts in the working 
memory. If one or several conditions are not met, no rule will fire and the agent will wait for 
external events. In our case, rules are used to specify a set of agent actions to be performed for 
a given situation. 

The knowledge base is constantly updated with new facts causing the execution of 
new rules. This will again add new facts to the knowledge base and set conditions for firing 
new rules. A simplified rule where the order agent checks if enough parts are available for a 
product order is presented in Figure 3.19. Once a product order is issued, the order agent 
counts the parts needed for production or assembly and if enough parts are available it 
reserves these parts for this particular product 
order. Otherwise it sends a message to the CA 
requesting more parts.  

The advantage of this type of 
knowledge-based system is to have a simple and 
very comprehensive way to represent the 
reasoning capability of an agent. This especially 
due to the high level of abstraction while 
expressing a particular agent’s behavior by 
rules. Moreover, rules are usually faster and 
cheaper to program then imperative code 
concerning their relative independence from 
other code as well as easier understanding and 
maintenance.  

The important part of the agent is its 
interaction model used for knowledge exchange, 
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Figure 3.18: The decision architecture 
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problem or conflict resolving, as well as negotiation, cooperation and coordination with other 
agents. This model provides the basic communicating system and supports the negotiating 
process. Autonomous agents cooperate by sending massages and using concepts from domain 
ontology. Our agents communicate by sending ACL massages designed especially to describe 
and facilitate agent communications and to make it possible to exchange information or 
knowledge between the heterogeneous agents [Fou03]. Having an architecture that involves 
autonomous agents, we do not need to predefine the interaction for the whole system, since it 
emerges from the actions and behaviors of the constituent agents.  

 
3.5.2 The Low Level Control 

 
The Low Level Control layer is built on top of the mechatronic components [Sun05] 

(Figure 3.17). Basic mechatronic components are compositions of the physical hardware and 
the interface provided to the control hardware (e.g. pneumatic or electrical connectors) to 
actuate or sense. Mechatronic components can also be built as a composition of multiple 
mechatronic components. For example the mechatronic component “Conveyor” consists of 
several components: 

- the conveyor, 
- the motor (offering electrical connectors to supply the motor and move the belt), 
- a power relay, allowing to switch the direction of the conveyor belt movement and 

offering electrical connectors, that are apt to be directly connected to low current 
micro controller outputs, and  

- inductive sensors to sense the presence of pallets [Heg08]. 
The low level control is established as a distributed control application based on IEC 61499. 
This layer includes the control hardware, the interfaces to the mechatronic components, the 
IEC 61499 runtime environment, and the 
control application [Heg08]. IEC 61499 is a new 
standard family of the IEC for Industrial Process 
Measurement and Control Systems (IPMCS). 
The standard IEC 61499 defines several 
models—the application model, the system 
model, the device model, the resource model, 
and the Function Block (FB) model—that allow 
the control engineer to develop distributed 
control applications in a graphical manner. The 
base model of IEC 61499 is the FB (Figure 
3.20). An FB is a software component that is self contained and provides its functionality 
through a defined interface. A trigger on one of the event inputs starts the execution of an FB. 
During the execution of the FB the input data will be processed, output data will be generated 
(depending on the functionality of the FB), and/or output events will be triggered. IEC 61499 

Figure 3.20: Graphical representation of the 
interface of an IEC 61499 Function Block 

[ZoiDiss07] 
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defines three different FB types:the basic FB that contain as main element a state machine 
that controls the internal execution on an input event arrival; the composite FB that serve as 
container for FBs and may contain a whole set of FBs and their event connections and data 
connections; and the service interface FB that provides an FB interface with functionalities 
which are beyond the means of IEC 61499 (e.g. access to the control device’s hardware, like 
the I/O interface or the communication interface). As said in the state of the art section, IEC 
61499 has several advantages that make this standard suitable for the basic control software 
architecture for reconfigurable lower level industrial control. First of all, it bases on IEC 
61131-3 which it makes easier to switch to the new technology. Furthermore important to 
notice are its modularity, its support for distribution, the event-triggered execution model, and 
a basic reconfiguration support as the key features for using this architecture as basis in this 
work [ZoiDiss07].  

 
3.5.3 Communication Interface between Agents and the Low Level Control 

 
An important aspect of our concept is the existence of a run-time communication 

interface allowing to transfer the information from the RT (real time)-control subsystem (i.e. 
data from sensors, diagnostic subsystems, etc.) to the agents and, vice versa, to propagate the 
control actions decided by the agents to the RT-control subsystem and thus to the physical 
actuators. The requirements on the interface between these LLC and HLC layers were 
specified by Hegny et al. [Heg08]. The interface shall be independent from the specific 
protocols, procedures, media, and software platforms. Furthermore a loose coupling of the 
layers (the LLC is subjacent to the HLC layer) shall guarantee that the interface does not 
disproportionately burden the LLC, which is capable to keep real-time constraints. The event-
driven execution of IEC 61499 and the asynchronous communication paradigm of software 
agents fit well. Therefore, mechanisms of IEC 61499 can be used easily for the interface. 
Service Interface Function Blocks (SIFB) encapsulate the access to functionalities provided 
by the controllers (e.g. timers, network access, and inputs and outputs). However, to 
implement such a communication interface few aspects of communicative commonality have 
to be considered as well: the means of communication should be standardized and accepted 
by all involved participants as well as the communicative acts have to be also implemented in 
a form that enables overall understanding. In our architecture HLC-LLC communication is 
done by sending a message with specific content through predefined channels which are 
known by both sides [Mer09]. Channels encapsulate the transmission paths between the LLC 
and HLC (Figure 3.17). These can be classified into upstream, downstream, and bidirectional 
channels, depending on the direction of communication. Upstream means that the message 
will be sent to the high level, downstream on the other hand means that messages are sent to 
the low level using a specific channel. Besides, the channels are specified with their own IDs. 
Few different implementations of the channels are possible: 
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- Network-based: both layers communicate over the network, using widely spread 
network protocols like UDP over Ethernet or TCP/IP [Heg08]. 

- Shared memory: when both HLC and LLC are placed on the same controller, local 
inter-process communication such as shared memory can be applied [Lop07]. 

On the LLC side the implementation of the 
interface is done with SIFBs. These define all 
aspects of the communication. On the HLC 
side, to make the interface usable for agents an 
appropriate description in the ontology is 
required. Here are again followed the aspects 
that separate the semantics of message 
transport from message type. In terms of IEC 
61499, a message is defined as a set of data 
transferred via a SIFB triggered by an event. 
Consequently, message types in the ontology 
have to represent a fix-ordered list of IEC 
61499 data types defining the structure and 
encoding of the message [Heg08]. A 
representation of these datatypes is included in 
the ontology as well as the MessageContent concept, and its subconcepts. These concepts 
specify an ordered set of IEC 61499 datatypes, which are used to transmit information 
between the layers. The unique name of a message type gives information about the purpose 
of the message (e.g. MTCConveyorMovement – content related to the conveyor directions 
regulation) and can therefore be checked for correct structure by the transport mechanisms 
(Figure 3.21). Channels encapsulate the actual transport mechanism. They cover issues such 
as addressing, protocols or content validation. The Class Channel provides a generic channel 
representation; it consists of scope (global or local), a unique ID, an assigned related resource 
type, and an assigned message type for each applicable direction. A generic interface for the 
HLC-LLC interface, which encapsulates the chosen implementation, allows an easy exchange 
of the transport mechanism between HLC and LLC entities, which represent the same 
mechatronic component, and to transmit and receive information (i.e. messages) on the 
existing, previously established communication channels. Status updates and commands are 
messages that are necessary to keep HLC and LLC synchronized. 

Changing a single aspect of the interface is possible without influencing the other 
aspects. For example the transmission channel can be replaced without the need to adapt the 
message content (e.g. replacing a multicast-message based network transmission with a 
shared memory implementation). 

 
 
 

Figure 3.21: Ontological representation 
of a LLC message 
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3.6 Implementation  
 

In order to validate our approach, we implemented the multi-agent architecture 
presented above. The overall system has been built on top of the Java Agent Development 
Environment (JADE) framework [JAD08]. The JADE architecture enables agent 
communication through message exchange based on agent communication language (ACL) 
[Fou03]. We have used Protégé-2000 [Stanf07] as an integrated software tool to develop the 
knowledge base. The reasoning is implemented using the Jess expert system shell [Sandi07]. 
JessTab [Eri02] is used as a plug-in for Protégé that allows us to use Jess and Protégé 
together. The expanded description of the implementation as well as of the mentioned tools 
will be given in the Chapter 6.  

 
3.7 Summary  
 

In this chapter, we presented the KASA multi agent architecture with agent classes 
corresponding to the defined layered structure of manufacturing system and mapping related 
system goals. Our MAS is composed of distributed heterogeneous units/agents, where each 
agent has its own objectives, knowledge and skills, has ability to easy absorb the permanent 
changes in manufacturing organization and environment. The manufacturing system agility is 
improved using ontology to enable knowledge interoperations between agents and to ensure 
the same presentation of the shared environment about which they are exchanging 
information with each other. Moreover, we used the ontology to integrate product designs, 
assembly planning processes and required assembly equipment. 

Taking into consideration the real world conditions, where particular actions have to 
be performed in a real-time, our architecture divides the control of a manufacturing resource 
to the low level control (LLC) and high level control (HLC). The HLC makes long term 
decision, has overview over the agent’s knowledge, goals and skills and coordinates 
manufacturing resource actions with global manufacturing environment. The LLC based on 
IEC 61499 manages actions of subjacent physical resource, acquiring and processing the 
information from sensors at the same time. Such agent structure enables high flexibility, 
modularity and reusability of hardware and software components.  

The next chapter will elucidate the dynamic workflow scheduling and performance of 
our architecture under dynamic conditions.  
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4. Dynamic Scheduling in the KASA 
 

“It is circumstance and proper timing that give an action its  
character and make it either good or bad.” 

Agesilaus II (444-360 BC) 
  

4.1 Introduction to Dynamic Scheduling 
  

Manufacturing systems are getting every day more complex and dynamic. Assembly 
systems, which are integral part of these systems, are also faced with these trends being forced 
to produce customized products in a short time at low price and under dynamic conditions. 
These assembly systems should also be able to handle failure events, e.g., if a resource 
becomes unavailable or overloaded. In such circumstances, appropriately selected and 
executed scheduling is a key feature for maximization of the system output. Being able to 
optimize a schedule of tasks considering capacity and time constraints is of primary 
importance for achieving these objectives [Bab05]. Due to the significance of process 
scheduling, extensive research work has been reported [Pin02]. However, the traditional 
centralized control approach, due its rigidity and centralized structure, suffers from the lack of 
flexibility and reconfiguration abilities especially if unexpected events occur, e.g., resources 
become unavailable, variations in job processing times, or sudden changes in task priorities. 
Moreover, the central unit could be also seen as a bottleneck, which may limit the capacity of 
the shop, and as a single point of failure, which can bring down the entire shop [Oue07]. The 
multi-agent system (MAS) approach, based on decentralized control architecture, has been 
suggested as an alternative to centralized control and scheduling [Bus04]. The main MAS 
characteristic related to the scheduling is that within this architecture each agent is responsible 
for scheduling of its own tasks as well as for supporting global system scheduling through 
coordination and interaction with the other agents. The global scheduling emerges from the 
local agent’s scheduling. The application of an agent-based approach in the scheduling 
domain tends a) to simplify the design and implementation of the scheduling system, b) to 
make the system more robust, and c) to reduce computational time and consequently the time 
needed to obtain a reasonable solution [Bab05, Jen03]. We employ MAS in combination with 
different dispatching rules to study dynamic scheduling strategies with particular attention on 
parallel machine scheduling strategies. In parallel machine scheduling, there are n tasks that 
have to be allocated respecting a set of constraints (capacity, due date, processing time, etc.) 
to m machines, each of which is running at its own speed. Our MAS assembly system is 
modeled as closed queuing transfer network with redundant paths, where each machine 
station connected to at least one transfer path (conveyor) can perform a particular operation. 
The order of tasks, which have to be accomplished to finish the product, is fixed and each 
product as well as the related tasks can have different due dates. 
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4.2 Task Scheduling 
 
The performance of the production system is affected with the choice of optimal 

strategies. Especially, if there exist recourses having scientifically bigger workload than other. 
In this case the machine with the maximum workload is the bottleneck. Balancing the 
workload between available resources will help to avoid such preventable limits and improve 
system output. Balancing the workload between parallel machines, considering the current 
system state, has been recognized as a potential way to flexibly schedule appropriate 
operations. Particularly in complex environment, this approach can maximize the overall 
system throughput, minimizing the work in process, flow time, and makespan [Raj04]. 
Moreover, it can increase resource utilization and hence improve productivity; and at the 
same time can help to avoid bottlenecks and to schedule unavailable resources.  

However, the parallel machine scheduling problem has two separate aspects: resource 
allocation and task sequencing. Resource allocation concerns the assignment of tasks to 
appropriate machines that can handle such tasks, while task sequencing prioritizes the tasks 
assigned to a machine. Our approach is structured according to these aspects: (i) resource 
allocation that is based on the negotiation between agents and (ii) task sequencing based on 
workflow balancing and dispatching rules for machine agents. Significant research results 
have been reported in the field of parallel machine scheduling [Che90, Mok01]. Agents in 
combination with dispatching rules have been tested for dynamic scheduling in [Yin07, 
Raj99, Won06]. Various agent architectures for dynamic scheduling in flexible manufacturing 
systems have been reported [She02]. 

 
4.2.1 Task allocation 

 
Many optimal and approximation algorithms for solving different types of scheduling 

problems have been developed and tested [Bla01]. In the distributed approach, the tasks 
allocation and execution is a result of the coordinated activities of many agents. Moreover, 
additional constrains/parameters (capacity, due date, processing time, etc.), which are 
specifying the properties that must not be violated, have been used in order to specify the 
width of a valid scheduling solution. Each agent schedules its own actions according to its 
current knowledge about the environment. To stay coordinated, agents need to synchronize 
their activities using inter-agent communication. As mentioned in previous chapter, we are 
using CNP to assign the task to the machine with the lowest workload. Our approach 
introduces the SA, whose main responsibilities are: (i) to send a call for proposals on tasks 
allocation to machine agents, (ii) to receive proposals for a particular task from the machine 
agents (Tagendatotal), (iii) to compare the proposals, and (iv) to finally allocate the tasks. The 
main objective for applying the negotiation strategy is to balance the workload among the 
resources evenly. 
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4.2.2 Task sequencing 
 
The dispatching rules have been used by MAs for sequencing the tasks allocated to 

their machines. Dispatching rules are extensively applied in manufacturing practice due to 
their simplicity, effectiveness, and their nature of an on-line algorithm [Hol97, Pes01]. Their 
usage for the local scheduling optimization of production lots with regard to various 
indicators, e.g., due date, machine utilization, has been a long-established research field 
[Cha02, Raj99]. Moreover, the structure of dispatching rules corresponds to rule-based 
behavior of our agents and is easy to implement. MA is using the dispatching rules after the 
current task is completed for selection of a next suitable one from a set of tasks that are 
awaiting for being processed by a machine. At this time, the related subassemlies/parts are 
already on the way to the machine, being immediately transported after ACCEPT 
PROPOSAL from bidding phase (if there are pallets available). In order to select the best 
suited dispatching rule for implementation in our system, we created four scenarios in which 
MAs alternately tested one of the following rules:  

1. First Come, First Served (FCFS): The first allocated task is executed first. 
2. Critical Ratio (CR) expressed as: 

 
where Rt is the remaining time from the current time to the due date of a product and 
Pt is the sum of processing times of all remaining tasks that make up that particular 
product. A lower CR indicates that the task has a tighter due date or longer processing 
time. A task with a lower CR is given higher priority than tasks with higher CR. 

3. Earliest Due Date (EDD) gives the highest priority to the task with the earliest due 
date. The task inherits the due date from the related product.  

4. Shortest Processing Time (SP): The task with the shortest processing time is 
sequenced first. 
 

4.2.3 Simulation approach  
 

We have used the Manufacturing Agent Simulation Tool (MAST), which is able to 
provide agent-based simulation support for our empirical study [Vrb08], to simulate various 
scenarios. The Test Management System (TMS) is used for automatically run predefined sets 
of test cases described in XML files [Mer08d]. These tools are easy to couple with our system 
architecture, since both systems use the JADE framework and almost identical MAS 
architecture [Mer08e]. The characteristics of the used architecture and the implemented 
production workflow are presented in previous chapter. The simulated Test bed layout is 
presented in Figure 4.1. 
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Figure 4.1: Simulated MAST Layout and the Test Management System. 
 

A total of 600 test cases have been generated with the TMS. Each test case consists of 
a workflow scheduling strategy (FCFS, CR, EDD, SP), the number of pallets to use (5, 10, 15 
and 20) and a workload of 40 orders. An order consists 
of a product type to be built and a randomly generated 
due date (defined in seconds) for the product. For 
simplicity, three pre-defined product types were used – 
simple, medium and complex – that differ in the 
number of machine operations and raw materials/semi-
products needed to assemble the final product. So 
called product trees depicting both required raw materials (ovals) and assembly operations 
(rectangles) for these three product types are shown in Figure 4.2. The shift time for a test 
case was set to 10 minutes (600 seconds). This value was chosen in order to ensure that 40 
randomly generated orders could not easily be finished without a proper workflow scheduling 
strategy. This implies that the overall time needed for producing all workload items is larger 
than the set shift time, resulting in less items being produced than actually ordered. Otherwise, 
if all ordered products would haven been produced, we would not have been able to measure 
the effectiveness of the chosen simulation parameters by using the number of finished prod-
ucts as a reliable parameter.  

 
4.2.4 Simulation Results 

 
Two kinds of measurements were carried out: a) the measurement of the effect of the 

number of pallets used together with the workflow scheduling strategy selected on the number 
of finished products, and b) the measurement of the impact of the selected workflow 
scheduling strategy on the machine utilization rates. The following section describes the 
results of the first type of measurements in detail (the second type results can be found in 
[Mer08d]).  
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Figure 4.2: Product types 
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The number of finished products is defined as the sum of all products which have been 
produced within a given shift time. The number of finished products measures the 
effectiveness of the workflow scheduling strategy parameterization, e.g., number of finished 
products in relation to the number of pallets used. In Figure 4.3 we show the number of pallets 
as significant predictor for the average number of products finished within a shift. Note that 
above a certain number of pallets the effectiveness increase due to faster transportation 
declines, for one strategy (FCFS) the number of finished products is even lower with a higher 
number of pallets. 

In the experiments we used different numbers of pallets (5, 10, 15 or 20) combined with 
workloads of 40 products randomly selected out of 3 different product types (simple, medium, 
complex). Table shows that the combination of Critical Ratio (CR) as workflow scheduling 
strategy and different number of pallets provides the highest number of finished products in 
average and could be considered as the best strategy. The CR, Shortest Processing Time (SP), 
and Earliest Due Date (EDD) strategies have shown that by adding more pallets into the 
workshop the number of finished products within a shift will increase. Just to give examples: 
by increasing the number of pallets from 5 to 10 the average number of finished products will 
increase by 68 % in SP, 62% in EDD, 61% in FCFS and 49% in CR. However, we can also 
observe while analyzing FCFS that by increasing the number of pallets from 15 to 20 the 
average of finished products will drop by 2% - therefore we conclude that FCFS has better 
usage for lower number of pallets compared to other strategies such as EDD and SP.  

The reason is that the SP, EDD and CR strategies always utilize the maximal number 
of pallets to deliver parts from the storage to the machines for assembling in parallel. In 
contrast, the First Come First Served (FCSF) strategy uses only a limited number of pallets, 
since the SA will not send further orders to the production line, until the first product is 
assembled. 

 
 

Number of Finished Products 
 

SP FCFS 

Pallets Mean STD Mean STD 
5 15,83 1,21 16,40 1,14 
10 26,66 5,95 26,46 5,59 
15 34,77 10,27 34,96 6,53 
20 36,03 7,06 33,95 8,91 
 EDD CR 
Pallets Mean STD Mean STD 
5 14,33 1,33 20,60 1,67 
10 23,22 5,70 30,73 4,31 
15 32,58 7,59 36,22 4,75 
20 34,76 5,92 37,54 3,95 

Figure 4.3: Number of finished 
products within a shift. 

Table 4.1: Comparison of Number of 
Pallets and Number of Finished Products. 
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4.3 Task Scheduling Considering Transportation Times and Conveyor 
Failures 

 
Traditional calculations for workflow scheduling strategies focus only on machine 

service duration; however, in some contexts the variation of transport time is a significant 
scheduling factor. It is possible that the distance to the selected resource and transportation 
time needed could significantly influence the efficiency of the overall system [Byr97], 
especially when the transportation times between machines are considerably longer than the 
machine processing times. Lee and Chen as well as Hurink and Knust studied machine-
scheduling problems considering transportation time and capacity [Byr97, Lee01]. 
Subsequently, Lee et al. considered disruption management and rescheduling [Hur01]. 
However, applying this approach in a centralized control system (with the associated 
difficulties in handling a large complex system) leads to an exponential growth in the number 
of possible scheduling solutions [Lee06, Hah94]. Moreover, since the manufacturing 
processes regularly change their states and settings, which may make previously optimal plans 
suboptimal; thus, we see the need for a more flexible approach able to provide reliable 
solutions in “near-real time”. We have investigated how balancing control policies in 
combination with transportation time calculation influence the overall system performance in 
production under different operating conditions.  

 
4.3.1 Task allocation and sequencing 

 
The task allocation procedure starts when the SA sends an announcement message to 

all MAs which offer the required machine function. The MAs answer with a bid message 
containing the estimated processing time of the machine function plus the estimated time 
needed for the transportation to the machine. The SA then chooses a MA with the minimal 
sum of machine function and transportation time and allocates the current task to this MA and 
the represented machine respectively by sending a bid confirmation message to the particular 
MA. On the other hand, the machine agents are, as described in previous section, using 
different dispatching rules (FCFS, EDD, CR and SP) to select the next job in the waiting 
queue. Additionally, we extended the CR and SP rules by adding the transportation time to 
machine to the calculation of the processing time, which is calculated in order to select the 
next task to be scheduled. 

1. Critical Ratio + Transportation Time (CRT): Defined as quotient of the sum of 
processing times of all remaining tasks (Pt) for a product and transportation time (Tt) 
to the machine for this particular task with the remaining time from the current time to 
the due date of the product (Rt). The task with the lowest CRT is selected. 
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2. Shortest Processing + Transportation Time (SPT): Defined as the ratio of the sum of 
the duration of the next task (Ttasktotal) and the transportation time (Tt) to the machine for 
this particular task with the total processing time of the product (TProductotal). The task 
with the lowest SPT is selected. 
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The performances of selected dispatching rules have been empirically evaluated and 
compared. The MAST is used again to build scalable and flexible production systems with an 
underlying transportation system (Figure 4.4). The TMS has been used to measure system 
performance under stable conditions and when facing unexpected events (e.g., failures of the 
transport system - conveyors), which influence the variation of transport durations.  

Figure 4.4: Overview System Architecture 
 

4.3.2 Simulation approach  
 
A total of 1,085 test cases were generated from the scheduling strategies as input to the 

TMS. Each test case consists of a scheduling strategy (FCFS, CR, EDD, SP; CRT, SPT), the 
number of pallets to use (10, 15 and 20), failure specifications and a workload of 25 orders. 
An order consists of a product type to be built (Figure 4.2) and a randomly generated due date 
for the product. The shift time for a test case was set to 600 seconds to ensure that 25 
randomly selected orders could not easily be finished in the study context without a proper 
workflow scheduling strategy (see Section 4.2.3). 

The failure specification consists of the identifier of the affected resource to fail, the 
start and end points in time of the occurrence of the failure. We classified the risk of a failing 
conveyor (according to the position and the importance of the conveyor for the overall 
system) for all conveyors in the workshop to 5 failure classes (see Table 4.2). For effective 
comparison of the robustness of workflow scheduling strategies regarding their exposure to 

Supply Agent

Machine Agent
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failures in the transportation system, 
failures with the same specification were 
used for all workflow scheduling 
strategies. 

 
4.3.3 Simulation Results 

 
In this section we present the 

results of the data analysis, which 
signify the change in production 
effectiveness due to a) the application of 
transport time consideration into the 
scheduling approaches and b) introduction of several classes of transportation failures. Figure 
4.5 shows that adding more pallets increased the number of finished products within a shift 
which holds true for all strategies. In Figure 4.5, when using 10 pallets, SPT offers the best 
overall production performance (Mean: 15.6 and STD: 1.8), however when increasing the 
number of pallets to 15 and 20 respectively, CRT outperforms the others strategies. 

In Table 4.3 we can see that by increasing the number of pallets in the workshop from 10 to 
15, the average number of finished products increases too, depending on the scheduling 
strategy: CR (33%), EDD (26%), FCFS (23%), and SP (4%). Additionally, we analyze the 
impact of including the transportation times in the calculation of the CR and SP dispatching 
rules. Figure 4.5 outlines both extensions offer slightly better results as CRT improved the 
performance of CR by average of 3 %, while SPT improved the performance of SP by 5%. 

Failure 
Class Failure Impact 

C0 No failure 
C1 Failures of redundant conveyors which 

cause almost no detours 
C2 Failures of redundant conveyors which 

cause long detours 
C3 Failures of conveyors resulting in the 

unreachability of a single redundant 
machine 

C4 Failures of conveyors resulting in the 
unreachability of multiple machines 

Table 4.2: Failure Classes and Risk Analysis 

Number of Finished Products 

CR CRT EDD 
 
  Mean STD Mean STD Mean STD 

10 14,11 1,07 14,11 1,45 11,21 1,29 
15 18,92 2,81 19,15 3,37 14,32 2,28 
20 20,89 3,38 21,22 3,70 16,33 3,12 
 FCFS SP SPT 
 

Mean STD Mean STD Mean STD 
10 11,64 2,30 15,21 1,60 15,65 1,75 
15 14,15 2,83 16,49 1,98 16,67 2,42 
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20 16,80 3,23 18,38 2,00 18,88 2,31 

Figure 4.5: Production effectiveness 
without failures for 6 work scheduling 

strategies 

Table 4.3: Average number of finished 
products for 6 work scheduling strategies (no 

failures) 
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In the second scenario, we analyze the results of introducing transportation failures 
into the simulation. We ran 210 test cases consisting of 10 test cases for each combination of 
strategy with class of failure. Therefore we can analyze the performance of each strategy by 
given the higher possibility to reach their maximum performances. Our data analysis suggests 
that introducing failures of a higher failure class statistically will likely reduce the number of 
finished products (Table 4.4). Figure 4.6 shows that without any failure all strategies offer 
their best performances compare to scenarios with failure, CRT and CR provide better 
performance in finishing the products as ordered while coping with failures compared to the 
other strategies. In Table 4.4, adding the first failure class reduced the average number of 
finished product by: CR (5%), CRT (7.4%), EDD (11%), FCFS (6%), SP (1%) and SPT 
(8.8%). 

We have conducted an empirical study on the impact of scheduling strategies 
(dispatching rules), number of pallets available, and transport system failures on system 
performance, measured the number of finished products in a shift. For this empirical study we 
ran extensive simulation tests for data collection and statistical data analysis. The system 
performance, measured with and without inclusion of transportation times, has shown some 
improvements when transportation times were included in the calculations. In order to 

investigate the ability of agents to manage dynamic environment conditions (such as machine 
failures) in the production automation domain applying dynamic dispatching rules and  
diverse failure handling mechanisms, we have done extensive tests by measuring system 
robustness and systematically comparing the overall system performance (e.g., number of 
finished products). This research will be presented in the remaining part of the chapter.  

 

Figure 4.6: Production effectiveness 
with failures for 6 work scheduling 

strategies and 20 pallets 

Table 4.4: Average number of finished 
products for 6 work scheduling strategies 
(with transport failures) using 20 pallets 

Number of Finished Products 
CR CRT EDD  

  
  Mean STD Mean STD Mean STD 

0 20.10 2.60 21.40 3.30 14.69 3.75 
1 19.09 1.44 19.81 1.72 13.09 2.42 
2 17.66 1.41 18.55 2.69 12.60 2.50 
3 16.00 1.26 17.45 1.75 12.00 2.09 
4 15.12 .835 16.37 1.18 10.88 1.83 
 FCFS SP SPT 
 Mean STD Mean STD Mean STD 
0 14.54 2.29 17.36 2.29 19.54 2.01 
1 13.63 3.58 17.27 2.32 17.81 2.22 
2 12.72 2.14 15.44 1.50 16.88 1.36 
3 10.54 2.06 15.07 1.11 15.53 1.39 

Fa
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4 9.66 1.37 13.30 1.06 14.37 1.06 
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4.4 Re-Scheduling Using Machine Failure Handling Policies 
 
Besides the rapidly changing market environment and customer requirements, current 

manufacturing systems also have to face dynamic conditions during the production process. 
Machine breakdowns or disturbances, task priority changes, integration of new resources, 
order cancellations, unequal machine utilization rates, and product quality problems are some 
of many exceptions that can influence the system performance and typically occur 
unpredictably. If the system is able to handle a particular fault situation and continues to 
operate without a significant loss of functionality, it is called fault tolerant [Hag96]. Fault 
tolerant systems should exhibit proportional degradation of service (e.g., throughput) 
depending on the class of problem that occurs. There is a range of failure handling policies to 
respond to exceptions and thus to improve the system tolerance. Traditional centralized 
hierarchical manufacturing systems, due to their rigid structure and lack of flexibility, suffer 
from weak failure tolerance, i.e., they are not able to handle such events effectively and 
efficiently, meaning that they either stop working or produce less products. Moreover, in 
these traditional systems all possible combinations of exceptions have to be predicted at the 
design time, otherwise their occurrence in real time can lead to scheduling errors and 
significant downtime related losses. Nevertheless, in complex systems the number of 
combinations grows exponentially which makes system re-scheduling and modification very 
expensive or time consuming [Tic06]. 

The application of the multi-agent systems based on decentralized control architecture 
has been suggested as a promising approach for overcoming these difficulties [Bus04]. 
Nevertheless, a blind application of the MAS approach to increase fault tolerance of a 
particular system can lead to the opposite result [Tic06]. It is necessary to empirically 
investigate MAS performance under dynamic conditions, when agents use a range of 
promising behaviors and apply diverse handling policies in order to cope with system 
exceptions. 

Considering the scheduling of production resources as a one of the key features of 
production control, in this section we examine the influence of re-scheduling on production 
effectiveness. Failure re-scheduling policies specify the overall tactics that define when and 
how the system has to cope with failure events. Several handling policies for task re-allocation 
carried out in case of extra-ordinary events (e.g., machine breakdowns) are explored in this 
study. In the section 4.2, we evaluated a range of workflow scheduling strategies based on 
multi-agent negotiation, where each resource agent performs local scheduling using 
dispatching rules for sequencing the tasks allocated to their machines. Considering their 
advantages, the usage of dispatching rules for sequencing rescheduled tasks after a specific 
handling policy is applied can reduce effects of a particular exception and improve system 
performance [Vie03]. Kutanoglu and Sabuncuoglu [Kut01] used this approach to study four 
reactive scheduling policies – no rerouting, queue rerouting, arrival rerouting, and all 
rerouting – developed for rerouting the jobs to alternative machines when their primary 
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machine fails. Bastos et al. [Bas05] presented a multi-agent architecture capable to support 
dynamic resource allocation planning in production environments. This architecture also can 
manage disturbances in the production system in real time by applying two strategies – 
replacement and re-scheduling. A market-based theory coordinates agent behaviors. Wu et al. 
[Wu07] presented an algorithm for automatic sequential resource (re)allocation among a 
group of agents in complex environments with limited shared resources and with 
uncertainties. Vieira et al. [Vie03] extensively studied the effects of re-scheduling policies on 
the performance of a manufacturing system. They concluded that the use of different model 
types, such as a mathematical model of dynamic and stochastic manufacturing systems, 
queuing network model or discrete event simulation model, can give useful information to 
analysts. However, the mathematical model does not explicitly represent the production 
control policies that will be actually used to control the system. Furthermore, additional 
research is required to compare the performance of a manufacturing systems under diverse 
dynamic conditions to explain the advantages and disadvantages of re-scheduling in different 
problem settings. 

Moreover, we simulate the real-life scenarios to test system performance in a dynamic 
environment. In this paper, we evaluate the failure tolerance of several re-scheduling policies 
from literature, where agents negotiate to coordinate their actions and apply dispatching rules 
for local scheduling. We also investigate how specific production conditions such as different 
levels of machine efficiency as well as duration of machine failures influence the performance 
of a handling policy. In order to strengthen the external validity of our research results, we use 
the real-world pallet transfer system at the Institute for Automation and Control, Vienna 
University of Technology, as a reference model for our MAS architecture. 

In the rest of this section, we evaluate the failure tolerance of several re-scheduling 
policies from literature, where agents negotiate to coordinate their actions and apply 
dispatching rules for local scheduling. We also investigate how specific production conditions 
such as different levels of machine efficiency as well as duration of machine failures 
influence the performance of a handling policy. In order to strengthen external validity of our 
research results, we simulate the real-life scenarios to test performances of our MAS 
architecture in a dynamic environment. 

 
4.4.1 Re-scheduling Policies 

 
The way how manufacturing systems treat the exceptional events can significantly 

influence their performance. Using predefined schedules, such systems are doing well if 
every-thing is going well. However, it is of vital importance to define their reaction on 
unexpected events. A re-scheduling policy specifies what event triggers re-scheduling and 
what method will be applied for re-scheduling. Moreover, it also specifies the method applied 
for revision of the existing schedules [Vie03]. Three policies related to the re-scheduling 
initiation events have been presented in literature [Sab00, Oue07] – periodic, event-driven, 
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and hybrid. A periodic policy is periodically initiated with a defined time period during which 
all available system information is collected and then used for deriving the re-scheduling 
setting. However, the effectiveness of this policy depends on the optimally adjusted length of 
the period, which might be hard to effectively anticipate. Moreover, this policy is not agile 
enough because critical events, which require prompt reaction, are not processed immediately, 
but wait at the end of the re-scheduling period. This is not the case for event-driven re-
scheduling triggered immediately when the specific event (e.g., job arrival, machine failure) 
occurs. However, in a large system, where the number of such events happening 
simultaneously can be enormous, the application of this policy can lead to continuous 
rescheduling and thus to lower stability and performance. A hybrid re-scheduling policy can 
be seen as combination of previous two approaches as the system re-schedules periodically as 
well as when specific, user-defined events occur, synchronizing policy occurrence avoiding 
their overlapping (e.g. to have periodic and event-driven rescheduling at the same time). 

Having a smaller manufacturing system as a test case, we decided to apply an event-
driven re-scheduling policy, considering machine failures as events that trigger re-scheduling. 
We implemented and tested four agent-based schedule repair methods corresponding to 
methods presented in [Kut01]: 

1. Right-shift scheduling (RS): when a machine breaks down this method postpones the 
job being currently processed as well as all other jobs that are waiting in the 
machine’s queue until the machine is repaired. During the repair time period the 
machine agent (MA) that is in the charge of this machine still responds to calls for 
bids from supply agents (SA), offering its free capacity in “after-repair” period. 

2. Agenda rerouting (AR): after the machine fails all jobs from the machine’s queue are 
rerouted to alternative machines. In contrast to previous case, the time that the jobs 
loose by waiting in the machine’s queue for its repair can be saved. However, also in 
this case the MA bids on its services during the negotiations with the SA about new 
jobs. 

3. New jobs rerouting (NR): in this case the MA keeps all jobs in the machine queue 
while refuses to bid on new arriving jobs. This policy tends to avoid the additional 
load to failed machine by not accepting new job arrivals and to prevent system stress 
through the machine queue jobs rerouting. 

4. Complete rerouting (CR) policy: combines the AR and NR methods. The machine’s 
MA addresses the SA’s of jobs that are scheduled to the failed machine to reroute the 
jobs to alternative machines as well as does not participate in subsequent negotiations 
with SAs about new jobs. 

Due to its simplicity, the RS policy is mostly applied by current manufacturing systems. Thus 
we consider it as a reference policy in our study. The AR and NR could be referred to as 
partial scheduling policies while the CR represents a regeneration policy. As mentioned in the 
introduction section we are additionally applying dispatching rules to handle dynamics of 
manufacturing environment. These rules are used by MAs, which supervise functioning of 
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machines for optimal sequencing of allocated jobs. The important advantage of dispatching 
rules is the ability to select the highest priority job from the machine’s queue considering all 
reliable up-to-date information at the time of selection.  We are using the Critical Ratio rule to 
prioritize jobs, because (as presented in section 4.2.4) it showed the best performance in 
comparison to others dispatching rules.  
 
4.4.2 Research Issues 
 

In the context of the empirical study, we define system performance, equivalent with 
the production effectiveness function E, as the average number of finished products within a 
given shift. As argument we consider following parameters: level of workload, number of 
pallets, re-scheduling policy, and type of failure. We define the following research hypotheses 
to be validated by the experiments: 

RI1: Influence of number of pallets on system performance E. Let us assume that a 
higher number of pallets will result in a higher overall system output. IF n and m are the 
number of pallets introduced, and E is the production effectiveness function, THEN we define 
the following null hypothesis: 

H0-1:  (n)} (m)|n >m{ EE ≤∃  (eq. 4.5) 
RI2: Impact of re-scheduling policy on system performance E. Let us assume that 

the use of different re-scheduling policies will result in a diversity of resulting system outputs, 
because some re-scheduling strategies include the machine agents representing broken 
machines into the negotiation process, while others do not. Furthermore, the different 
handling of already queued or future awarded jobs to broken machines could also have a 
significant impact on the overall system performance. IF α represents the AR re-scheduling 
policy, β represents the NR re-scheduling policy and γ represents the CR re-scheduling policy, 
THEN we can define the following null hypothesis: 

H0-2:  }))()(min( )(| ,,{ βαγγβα EEE ∨≤∀  (eq. 4.6)  
RI3: Impact of failure type on system performance E. Let us assume that the 

duration of machine’s unavailability (two different periods for machine failures and machine 
disturbances) has a direct influence on the overall system performance. IF f is a machine 
disturbance (faster recovery) and s is a machine failure (slower recovery), THEN we propose 
the following null hypothesis: 

H0-3:  (s)} (f)| sf,{ EE ≤∀  (eq. 4.7) 
RI4: Impact of workload level on system performance E. Let us assume that the 

number of orders directly influences the relative system performance. IF l represents a lower 
number of received orders and h represents a higher number, THEN we identify the following 
null hypothesis: 

H0-4:  })( )(| >{
h
hE

l
lElh ≤∃  (eq. 4.8) 
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4.4.3 Simulation Approach 
 

This section describes the details of the simulation experiment carried out in MAST-
TMS environment. A total of sixty four evaluation scenarios have been tested. In each test 
case, the Critical Ratio dispatching rule has been applied and different values of following 
parameters set: the re-scheduling policy (RS, AR, NR and CR), the number of pallets 
providing transportation (10, 15, 20, or 25), the machine failure recovery time (f - faster 
recovery or s - slower recovery) and the level of workload (l – low: 2,880 or h – high: 5,760 
number of orders). An order consists of a product type to be produced and randomly 
generated due date (in seconds). We used three pre-defined product types as shown before in 
Figure 4.2. Machine operation times and transportation times were considered as fixed for all 
evaluation scenarios. The shift time for an evaluation scenario was set to one full day (24 
hours) to ensure that depending on the used workload a set of randomly selected orders could 
not easily be finished in the study context (see Section 4.2.3). 

The machine failure specification consists of the machine identifier and start/end time 
points of the failure. We classified the risk of failing a machine using two different failure 
classes: machine disturbances (f – faster recovery), which can be re-paired in approximately 
0.1% of the overall shift time, and machine failures (s – slower recovery), which requires a 
longer repair time, in our case about 10% of the overall shift time. For effective comparison 
of the robustness of the re-scheduling policies, failures with the same specifications were used 
for all evaluation scenarios. We used a workshop layout consisting of four machines, each 
capable of performing between 2 and 4 different machine operations, presented before in 
Figure 4.4. The sixty four generated evaluation scenarios were split down into four batches, 
each containing sixteen test cases and particular re-scheduling policy applied. These batches 
were run in parallel on four high-performance mainframe servers, taking it approximately 
eight hours to finish a single batch. After all tests had been finished, the resulting data were 
collected from the mainframe servers and analyzed using various statistic tests. 

 
4.4.4 Experimental Results and Discussion 

 
We explore the impact of additional factors such as failures, disturbances, overloads, 

etc. on the system output. Especially, we judge the manufacturing system ability to absorb a 
machine failure using predefined failure tolerance policies. As important factors we consider 
different duration of machines down-time, diverse levels of production workload as well as 
various number of transportation units (pallets). 

 
A) Number of finished products considering all factors 

Similarly to Kutanoglu and Sabuncuoglu in [Kut95], but applying the decentralized 
multi-agent control and using CNP for workload balancing, we reached the same conclusion – 
the superiority of CR (complete rerouting) policy over the other policies. As presented in 
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Figure 4.7 as well as in Table 4.5 
showing the mean numbers of 
finished products depending on 
number of palettes, the CR policy 
outperforms RS (right-shift 
scheduling) policy approximately 
by 12% to 16%. This is an 
expectable result because the 
immediate exclusion of the failed 
machine from production and full 
re-scheduling of tasks in its 
queue to other available 
machines significantly 
compensates the failure state 
when no action would be taken in 
case of RS policy (the tasks in 
machine’s queue have to wait for 
machine repair). This is of course 
true only if suitable alternative 
resources are available. 

Notable is a good 
performance of the NR (new jobs 
rerouting) policy, which proves that the failed machine should be urgently excluded from 
further scheduling until repaired. How-ever, due the fact that the NR policy keeps already 
awarded jobs in machine’s queue, its performance is approximately by 5.6% to 6.6% weaker 
than of the CR policy. Interesting fact is also the influence of number of pallets on production 
performance. The 150% increase of pallets results only in 15% gain in production output. 
This can be justified by increased number of traffic jam situations caused by a limited space 
for palettes in a conveyor-based transportation system. 

 

B) Number of finished products focusing on failure duration 
Extensive experiments have also been done to identify how the efficient failure 

recovery impacts the system performance. As mentioned earlier, in a general overview, the 
CR-(f - faster recovery or s - slower recovery) policy wins the race, but relation between the 
NR-(f,s) and AR-(f,s) policies deserve deeper study (consult Figure 4.8 and Table 4.6). 

While the difference between the NR-f and AR-f policies, when short disturbances 
periodically occur, stays almost constantly around 1% in favour of the NR-f policy, this ratio 
notably grows when the failure duration prolongs (NR-s and AR-s curves respectively) and 
the number of pallets rises. The fact that the NR-s policy performs by 8% better than AR-s 
when using 25 pallets can by explained such as this policy is handi-capped just by those 

 
Figure 4.7: Mean of finished products of a shift by 

strategy  

Number of Pallets 

10  15  20  25 

 Number of finished Products 
Strategy 

Mean  STD  Mean  STD  Mean  STD  Mean  STD 

RS  509  64  522  68  551  71  577  75 

AR  532  71  549  71  580  75  606  78 

NR  539  69  555  72  586  77  632  58 

CR  575  74  591  77  619  86  669  66 

Table 4:5: Finished products  
by number of pallets and re-scheduling policy. 
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products which are already 
awarded to the machine while 
all others incoming after the 
failure are re-balanced to other 
available machines. On the 
other hand, the AR-s policy 
profited by re-scheduling of the 
queued jobs, but only to such a 
point where the number of 
palettes in the system caused 
traffic jams and consequently 
increased the number of 
unfinished products that were 
on their way to alternative 
machines instead of waiting in 
the machine’s queue for repair. 
This finally resulted in weaker 
performance of the AR-s 
policy. 

 
C) Number of finished 

products focusing on 
workload 

The introduction of two 
levels of workload (l – low: 
2,880 or h – high: 5,760 orders respectively) has again confirmed the supremacy of the CR-(l, 
h) policy (see Figure 4.9 and Table 4.7).  
It is interesting to note here that the system with higher workload, especially due to the 
overloading and traffic jam, has shown a 4.7% to 6% weaker performance. Nevertheless, even 
then the CR-h policy with a higher workload was able to outperform all remaining policies. 
 
D) Empirical Results 
 

Analyzing the empirical results, we derive the following implications for the impact 
factor analysis regarding the re-scheduling policies: 

 
Figure 4.8: Influence of failure duration (f - 
faster recovery or s - slower recovery) . 

Number of Pallets 

10  15  20  25 

Number of finished Products 
Strategy

Mean  STD  Mean  STD  Mean  STD  Mean  STD 

RS‐f  564  71  579  75  610  79  640  83 

AR‐f  592  79  608  79  642  83  672  86 

NR‐f  598  76  615  80  650  85  679  62 

CR‐f  638  82  655  85  692  96  724  71 

RS‐s  455  57  466  61  491  63  514  67 

AR‐s  472  63  489  63  517  67  541  70 

NR‐s  481  62  495  64  521  69  585  54 

CR‐s  512  66  527  69  547  76  615  61 

Table 4,6: Finished products by defined failure 
duration.
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Influence of number of 
pallets on system performance 
E. The data analysis shows that 
an increase of the number of 
pallets will increase the overall 
system output. As shown in 
Table 1 the number of pallets 
has a significant impact on the 
overall system performance (in 
terms of number of finished 
products) with a p-value < 0.01. 
In the study context, an increase 
of the number of used pallets 
(i.e., from n to m) always 
increased the number of 
finished products. Therefore we 
can state that 

 (n)} (m)|n >m{ EE >∃ , and so 
we can reject null hypothesis 
H0-1. 

Impact of re-
scheduling policy on system 
performance E. As shown in 
Figure 3, the Complete 
Rerouting (CR) policy outperforms all other rerouting policies (p-value < 0.01). Therefore, 
we conclude that the overall system performance of the CR policy (γ) is higher than the 
system performance of all other rerouting policies, namely the NR (β) and AR (α). We can 
state that  }))()(min( )(| ,,{ βαγγβα EEE ∨>∀ , and hence we can reject null hypothesis H0-2. 

Impact of failure type on system performance E. Figure 4 shows that the failure 
recovery time has a direct impact on the resulting overall system performance. A faster failure 
recovery (f) will increase the production effectiveness, while slower failure recovery (s) 
decreases the production effectiveness with a p-value < 0.01. In the study context, a decrease 
of the failure recovery time always led to an increased number of finished products. Therefore 
we can state that  (s)} (f)| sf,{ EE >∀ and reject null hypothesis H0-3. 

Impact of workload level on system performance E. As shown in Figure 5, the 
number of orders directly influences the relative system performance. As observed in the 
experiment, an increase of the number of orders (i.e., from l to h) will statistically lead to a 
decreased overall system performance. Therefore we can state that  

 })( )(| >{
h
hE

l
lElh >∀  

and reject null hypothesis H0-4. 

 
Figure 4.9: Influence of different levels of 

workload (l – low: 2,880 or h – high: 5,760 orders) 
Number of Pallets 

10  15  20  25 

Number of finished Products 
Strategy 

Mean  STD  Mean STD  Mean  STD  Mean  STD 

RS‐l  522  66  537  70  566  73  593  77 

AR‐l  547  73  564  73  596  77  623  80 

NR‐l  552  71  571  74  602  79  650  60 

CR‐l  589  76  608  79  635  87  688  68 

RS‐h  497  62  508  66  535  69  561  73 

AR‐h  518  69  533  69  564  73  590  76 

NR‐h  527  67  539  70  569  75  615  56 

CR‐h  562  72  574  75  603  82  651  64 

Table 4.7: Finished products by level of 
workload. 
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4.5 Summary  
 

The simulation results indicate that the concept of multi-agent approach is well suited 
for building complex systems featuring a good performance. Moreover, due to its distributed 
nature it is possible to optimize the output of the system components consequently, resulting 
in an increase of the system efficiency. Our simulation results indicated that the critical ratio 
offers better results than the other tested rules. The system performance, measured with and 
without inclusion of transportation distance as well with and without failures, has shown some 
improvements when transportation times were included in the calculations. Comparing the 
different re-scheduling policies, we concluded that complete rerouting policy remarkable 
outperforms all other policies. Our experiments show that a higher number of pallets in fact 
always increased the number of finished products, but due to traffic jams with diminishing 
marginal gains. Further, longer failure durations have a certain impact on the overall system 
performance, since the number of products in the queue as well as the participation of a failed 
machine in the job allocation process seriously influences system performance. Finally, we 
found in the study context a limited size of workload to lead to higher system output, because 
of the lower system utilization and fewer occurrences of traffic jams.  

This work can be leveraged in terms of implementing proactive re-scheduling policies 
and evaluating and comparing their performance to the performance of reactive re-scheduling 
policies. Additionally, more complex workshop layouts (more machines, more complex 
routes) could be used to compare the performance of the presented re-scheduling policies. 
Moreover, future work can leverage the results of this thesis by analyzing and evaluating 
combined impact of transport system failures and machine failures on the system efficiency. 
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5. Failure Tolerance in the KASA 
 

“If everything seems to be going well, you  
have obviously overlooked something.” 

Murphy’s Law 
  

5.1 Introduction to Failure Tolerance 
 
We noticed in the second chapter that serious concerns regarding the robustness and 

survivability, especially in complex and unpredictable environments, restrict wide adaptation 
of multi-agent systems in industry [Hel04]. Consisting of autonomous entities/agents that 
have to cooperate and coordinate their activities, the performance of multi-agent systems 
(MAS) could be significantly influenced with the failure of particular agent(s). While their 
modularity establishes MAS as good platforms for building fault tolerant systems on the one 
side, their non-deterministic behaviour makes it pretty hard to predict overall system output in 
fault situations on the other side [Sny04]. Especially in large-scale MAS, where the failure 
rate grows with the system complexity due to the number of deployed agents and the 
computation duration, the fault tolerance is a vital issue [Xua04]. These systems have to be 
able to absorb the failure (detecting, isolating and recovering from it), while the rest of the 
system proceeds with its regular functions.  

Respecting its importance, a lot of work has been done and reported with regard to 
fault handling in multi-agent systems. The inability of an agent to perform a particular action, 
which was specified in its behaviour and triggered through an external event, can be defined 
as its failure. Several types of failures have been specified in literature: crash failures when a 
component stops producing output; omission failures when the faulty component can 
eventually resume its output production; timing failures occur when the output is produced 
outside the defined time slot; and arbitrary failures are related to arbitrary output values at 
arbitrary times [Fac06]. If the system is able to handle a particular fault situation and 
continues to operate without a significant loss of functionality, it is called fault tolerant 
[Hag96]. The failure tolerance has been mostly spread and analysed in two related domains: 
failure detections and failure recovery. The failure detection is an essential service that has to 
be provided in a system in order to achieve satisfactory failure tolerance. Several approaches 
that cope with the identification of failure states have been investigated [Dev00]. A typical 
scenario for failure detection is the periodical exchange of “I am alive” messages between 
individual hosts [Fac06]. The problem here is equivalent increase of the message flow that 
can cause an overload of the communication service and influence the system performance, if 
the system structure is not well organized. Bertier et al. presented a shared failure detection 
service split into two layers: the basic layer that adapts the heartbeat emission interval to the 
network conditions, and the adaptation layer that customizes the quality of service provided 
by the first one according to application needs [Ber03]. Hagg used another approach by 
applying external agents (sentinels), which observe the inter-agent communication. They can 
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detect inconsistencies in the agents’ behaviors by monitoring their activities as well as their 
internal state. Some items (beliefs) from the world model of agents, which are related to them, 
are directly copied to the world model of the sentinel. Other parts of the model can be built by 
monitoring the agent communication and by direct interaction (asking). Sentinels can also use 
timers to identify non-functional agents (or a faulty communication link) [Hag96]. A similar 
approach is reported by Snyder and Tomlinson who are using sentinel-based unreliable fault 
detectors for failure identification [Sny04]. The social diagnosis approach, where agents are 
comparing their own states with peers in particular team-mates to detect possible failures, is 
presented by Kaminka and Tambe [Kam98]. 

Failure recovery can be defined as the application of particular techniques for handling 
identified failures. A replication mechanism is often used for failure recovery [Fac06, Gue04]. 
It involves the replicated agents that have several copies of their behaviours and states on 
different locations. Once the original agent failed, its replica can overtake its place in the 
system. Mellouli presented a methodology based on this mechanism, which assists designers 
in the development process of fault-tolerant systems [Mel05]. However, the shortcoming here 
is a weak software redundancy since the identical software subsystems will fail in identical 
ways [Huh02]. In the previously presented sentinel approach the failure recovery is done by 
sentinel agents, which are choosing alternative problem solving methods to recover an agent 
from a failure state [Hag96]. Nevertheless, the architectural structure, where sentinels can 
fully inspect and influence other agents, does not satisfy the assumptions of openness and 
agent autonomy [Pla08]. On the other hand, Kumar and Cohen presented a fault tolerant 
brokered architecture, where the teamwork is used to recover a multi-agent system from 
broker failures [Kum00]. However, it seems that the system is more focused on the broker 
failure tolerance and less on those of individual agents, requiring extra computing for the 
management of brokerage layers [Kha05]. 

Having a multi-agent architecture, which is based on agents that encapsulate particular 
functions of manufacturing systems and only have software representation on one side as well 
as agents that supervise specific hardware components within manufacturing systems on the 
other side, we present a hybrid failure tolerance approach that combines the heartbeat 
mechanism for failure detection and the supervisor agent approach for system failure 
absorption and recovery. In the rest of this chapter, we will describe specifications and 
differences of failures related to the agent’s representation type as well as the failure tolerance 
procedure linked to software or hardware agents respectively. At the end of the chapter we 
will present implemented system recovery scenario and discus achieved performances. Due to 
its simplicity, we will use the crash type of failures as case study.  

 
5.2 Failure Types 

 
Multi-agent systems can be seen as a community of autonomous, intelligent 

entities/agents, where each agent has to cooperate and coordinate its activities with other 
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agents in order to achieve own and respectively the system goal as well. Being mostly applied 
in a dynamic environment where the permanent changes are the only constant, agent has to be 
able to identify these changes. An agent can receive information from the environment by 
sensing it (e.g. sensors) or through communication (e.g. messages) with other agents. In order 
to react appropriately on it, an agent has to be able to “understand” this information. 
Consequently, in the case of an exceptional event (e.g. failure) an agent has to be able to 
interpret it. Moreover, an internal representation (e.g. knowledge) is required as reference for 
agents to evaluate incoming events and to be able to distinguish the exceptional from ‘normal’ 
ones [Pla08].  

Having its surrounding represented in an ontology, an knowledge-based agent is able 
to reason about the concept and appropriately respond on the received information. It is 
capable to discover its own or even failure from other agents if required. Moreover, its actions 
can be saved in the knowledge base, which copy could be placed and permanently updated on 
the “safe” location. In the case of the identified agent failure, the new agent with the same 
behaviours and copied knowledge from the old one can be relaunched in order to reach the 
predefined goals. Differences to the replica approach are that here are copied only the data 
and not an agent and that there is no divestiture on critical and non-critical agents since every 
agent has particular meaning to the system. We successfully tested this scenario, but since this 
was not the main focus of our approach it will be not discussed further.  

As presented in the third chapter, our architecture is based on the two types of agents: 
physical and functional ones. Receptively, MAS based on different agents types result in 
diverse failure types and related failure tolerance procedures as well. Considering the 
definition of Hiller, a system failure is a result of a system state error, which again is caused 
by a specific fault [Hil98]. It is also important to mention that not every fault leads necessarily 
to a failure. Nevertheless, each particular failure, which can potentially influence the system 
in a bad way (i.e. by minimizing its performance), has to be detected and possibly absorbed. 
We will make a brief look into possible failure types of MAS, which highly depend on the 
nature of the application. In process automation the following three viewpoints could be 
identified: physical component failures, software entity failures, and system disturbances. 
Physical component failures include the complete breakdown of particular resources or their 
temporary failure (e.g. blockade of an intersection, overloaded conveyor, etc.). Software 
entity failures include all types of failures related to agents in MAS. Mellouli distinguished 
agent failures regarding the agent’s ability to communicate [Mel05]: 
The communication with the agent is down but: 

• The agent can perform all of its tasks, 
• The agent can only perform some of its tasks, 
• The agent cannot perform any of its tasks, 

Or, the communication with the agent is up but: 
• The agent can only perform some of its tasks 
• The agent cannot perform any of its tasks 
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All of the mentioned failures of agents are critical, because MAS are vitally depending on the 
agents’ capability to communicate. The system disturbances include exceptions like rush 
orders, quantity and mix variations, or incorrect deliveries, which should be considered in the 
system concept. A failure tolerant system should be able to absorb all these failures mentioned 
above. However, since the system disturbances could be generally handled with a well 
designed architecture and defined related agent behaviours, we will focus in this study on 
physical component and software entity/agent failures, which are mostly unpredictable and 
evolve dynamically. Besides, our attention will be pointed out to failure tolerance in case of 
the complete breakdown of particular physical components or failures when agents cannot 
perform any of their tasks.  

 
5.3 The Failure Handling Concept 

 
Figure 5.1 shows the different types of agents. One the left side we have agents that 

supervise particular resources (e.g. conveyors or robots). These agents are linked with the 
LLC based on IEC 61499, 
which is used to define and 
program a LLC application that 
controls the physical system, 
acquires the information from 
sensors and actuators, and 
enables the agent level to 
perceive the environment 
through it. On the right side we 
have strictly functional agents 
without reference to a special 
resource of the system (e.g. 
contact-, supply-, or order-
agent – as explained in the previous section). As said before, we distinguish physical 
component failures (Failure Type LLF, Low-Level-Failure) and software failures (Failure 
Type HLF, High-Level-Failure). The failure type LLF represents failures of the hardware or 
within the associated low-level control. Such failures could be: 

(a) the breakdown of conveyor belts, which means within the actual hardware, or  
(b) a failure in the controlling function block based application. 

In case (a) the LLC is able to recognize the failure of the hardware via sensors and can 
inform the agent through specially implemented statusChannels between LLC and HLC 
(defined for the exchange of status messages). As a result, the agent reacts in an appropriate 
way, based on its predefined failure rules [Mer09]. In case (b) the hardware is potentially 
uncontrolled and the agent cannot get any error message from the LLC. However, due to the 
implemented heartbeat between the LLC and HLC, which could be compared with a 
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watchdog (that is broken in this particular case), the HLC of the agent recognizes the failure 
of the hardware controlling functions and is also able to react on it. The existence of the 
statusChannel is of vital importance since it enables the mutual and periodical supervision 
between LLC and HLC. If one part is not responding within a predefined time, the other part 
starts failure handling procedures. Hence, the agents’ reaction procedure is nearly the same as 
in (a), because the agents only recognize physical component failures and start failure rules. 

The failure type HLF targets unexpected failures of software agents. In this case an 
agent itself is not able to perform any of its tasks. Generally, this failure detection is done with 
a heartbeat (HB) mechanism, where two agents periodically exchange messages. In large and 
complex multi agent systems this could lead to a huge amount of exchanged messages, which 
could affect the system in a negative way and further lead to a weak performance. A way to 
keep this message exchange in a low amount is to use this form of heartbeat mechanism only 
for associated agents. Therefore we distinguish between two types of agents based on their 
types of failures: 

(c) a failure of HW-controlling agents, and 
(d) a failure of functional agents. 

The HW-controlling agents use an internal heartbeat to monitor a failure in case (c), 
implemented between LLC and HLC. Hence, the LLC-part of the agent, which is running in 
IEC61499, is now able to identify the failure within the JADE-part of the agent via this 
heartbeat. It starts a procedure, which informs the Agent Management Service (AMS) of the 
platform, to restart the HW-controlling agent completely. This is ensured with a backward-
recovery, where the agent’s actual knowledge base is used to get all necessary information, 
like name, address, or goals of the agent. Therefore, firstly the erroneous agent will be killed 
and removed from the platform and then a new agent with the same representation will be 
started. In this case the agent’s knowledge base, which covers its actual internal 
representation, is uploaded from the system memory or agent backup files. 

On the other side, functional agents don’t have the possibility of such an internal 
watchdog, because there is only one SW-Module (JADE). Therefore these agents use the 
common heartbeat mechanism. This is done by periodically sending messages through the 
JADE runtime. In case of the presented system, this message exchange is done between the 
CA and the OA and SA for each received customer order.  
 
5.4 Implementation 
 

a) Heartbeat-Mechanism  
At the beginning we will focus on the heartbeat mechanism in general. Normally a 

heartbeat mechanism is based on the exchange of request and answer messages between two 
entities. Figure 5.2 presents the heartbeat between two agents. THB is the period of each 
heartbeat. The period should be longer than the expected heartbeat time tHB, which consists of 
the reaction time tR and the times necessary to transmit both messages, the request and their 
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answer, over the network. The reaction time is as long as an agent needs to receive and 
process the message including the time to prepare an answer message. 

 
Figure 5.2: Heartbeat mechanisms 

 

When an agent starts the heartbeat mechanism, it is awaiting the answer in a given 
time (in our case THB). When a correct answer message is received in the specified time, the 
agent knows that the other one is alive. The picture shows, that if an agent receives a request, 
it replies, awaiting again the request message within THB time. That way, it is possible for two 
agents to control each other.  

 
b) Heartbeat-Organization  

If one agent sends no answer in the given time, the other agent realizes this missing 
message as a failure and informs the platform managing agent about the failed agent. This 
offers many possibilities to implement a heartbeat mechanism in multi agent systems, as 
shown in Figure 5.3. All the proposed solutions, as presented in Figure 5.3, focus on the 
already introduced machine-agents, while the 
functional agents always use a peer-to-peer 
mechanism for realizing the heartbeat. One possible 
solution – shown as broker architecture – is a 
centralized version with one supervising agent 
(CA), which is the heartbeat-partner for every other 
MA in the system. The major drawback is that due 
to the centralized aspect this agent could become a 
bottleneck, which leads to unreal failures caused by 
timing problems. A second aspect is the significant 
amount of messages needed to realize such a 
heartbeat mechanism [Kop09]. The second solution 
is to create peer-agents, which are only responsible 
for each other. In that case, one agent (e.g. CA) is 
necessary to manage the peers at startup and introduce agents before a heartbeat messages are 
exchanged. The bottleneck is reduced to the startup-phase of the agents. Our proposed 
solution is a hybrid architecture, where only the functional agents perform a peer-to-peer like 
heartbeat mechanism by sending messages over the network. The machine agents perform the 
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heartbeat mechanism without sending messages over the network. They use an internal 
heartbeat between their HLC and LLC. Nevertheless, in the case of the complete breakdown 
of both (HLC and LLC), this failure could only be detected from its surrounding agents while 
they interact with it. This could be solved through a time-constrained message interaction or 
through special sensors and will be a part of our future research being mentioned here only to 
meet the principle of completeness. We focus more on the possibilities of a hybrid heartbeat 
using a heartbeat communication between LLC and HLC.  

 
c) Heartbeat Communication between LLC and HLC  

The sanity of both parts of MAs is detected by heartbeat messages exchanged between 
the two layers. In our implementation the message content is separated from the message 
transfer channel. Since both layers are implemented in different runtime environments, the 
initial realization is done via local network communication, as already described in [Kop08a] 
[Heg08]. The bidirectional bStatusChannel has the task to provide status information of 
the mechanical component and the real-time capable LLC-layer to the HLC. Since the 
payload on this channel is minimal and recent information on the component-status is 
essential for the HLC, this channel is used to exchange the heartbeat messages. The heartbeat 
functionality of the LLC is realized by a small function block (FB) network containing 3 FBs 
as shown in Figure 5.4a. The composite function block (CFB) “bChannelStatus” is actually 
responsible for receiving and sending the 
heartbeat from and to the HLC. It 
contains the necessary service interface 
function blocks (SIFBs) for the 
communication within the controller. 
SIFBs are designed to provide the 
required interfaces concerning 
communication with remote resources as 
well as access to hardware elements 
(such as physical I/O ports of a 
controller) of a device. The CFB 
“LLC_HeartBeat” contains a network of 
3 FBs (see Figure 5.4b) that are 
responsible for triggering and observing 
the heartbeat. After initialization of the 
LLC, the heartbeat generation is started by the START-event received by the “E_CYCLE”-
FB. This block now triggers “bChannelStatus” to send a heartbeat to the HLC every 5 
seconds. Simultaneously a flip-flop is set as a confirmation for sending the heartbeat (FB 
“E_SR”). This flip-flop is reset as soon as the HLC returns the heartbeat. A response of the 
HLC heartbeat within 5 seconds indicates that the HLC is still functioning. However, if the 
heartbeat is not returned by the HLC within 5 seconds, an error-event is triggered and sent to 

Figure 5.4: Low-Level heartbeat 
functionality 
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the CFB “HLC_ErrorHandling”. In case of a detected error, “HLC_ErrorHandling” stops the 
heartbeat and is able to activate recovery measurements. For instance it can send a message 
via the network to the remote management agent (RMA) with the content that the HLC is no 
longer reachable. Or it may contain SIFBs with functionalities concerning the operating 
system (OS) of the controller. In this case it may trigger a restart of the HLC agent platform or 
even a complete restart of the controller. As soon as the failure recovery measurements are 
executed, the heartbeat is restarted [Kop09]. 

The failure recovery procedure, when the HLC doesn’t receive a heartbeat from the 
LLC or receive the message from it that the related hardware component is out of order, will 
be presented in the remaining part of the chapter. We tested the behaviors and reconfiguration 
abilities of the presented knowledge-intensive multi-agent architecture using simple transport 
tasks and introducing some internal disturbances (failure of particular components e.g. 
conveyors). 

 
5.5 Reconfiguration Abilities of the KASA  

 
The route planning and best path algorithms are highly researched topics in computer 

science for many years [Tom05]. Based on Dijkstra’s algorithm, we implemented a simple, 
but very efficient Shortest Path Algorithm (SPA), which is used by diverter agents for 
calculating a routing table and by pallet agents for the distance calculation during the 
negotiation process regarding the transport allocation [Mer08]. Furthermore, we introduced a 
Change-Direction-Algorithm (CDA) to test the failure recovery characteristic of our 
architecture. It handles a breakdown of conveyors which might lead to unreachable 
destinations (machines). The CDA is able to find the best stable configuration of the transport 
system by changing the directions of specific conveyors [Kop08b]. The CDA, like the SPA, 
starts from the ontology representation of the proper functioning system and presents its 
structure as a matrix. The matrix is then filled with all intersections and adjacent conveyors. 
After that, the occurred failure is introduced in the matrix and the CDA starts to change 
virtually the direction of all potential-solution conveyors and checks the system functionality. 
The new solutions will be compared with previous ones and saved, if marked as better. 
However, the new solutions could also effect and cause the direction changes of some 
adjacent conveyors in the system. The CDA is therefore programmed as a recursive algorithm 
in order to being able to evaluate such states as well. The system functionality in a dynamic 
environment is demonstrated by introduction of failures of particular resources. Correlated to 
our concept, the system environment is represented within the ontology. The instances are 
used to represent locations whose attributes and relations provide details of locations 
reachable from it, as suggested in [Cor05]. The path is being defined as a set of segments 
(conveyors) between the current position and the destination. The constraints of system 
components (e.g., conveyor overloaded – busy) are also incorporated in the ontology and 
regulated trough appropriate agents’ behaviors. A representative part of the pallet transfer 
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system is shown in Figure 5.5. The presented section consists of Diverters (D1, D2), Junction 
(J1, J2), Index Stations (I1, I2, I3) and Conveyors (C1, C2, etc.) between them. The main 
objective of the system is to transport pallets using the shortest way to their target 
destinations. In the presented example the destination is I1. In the case of a proper system 
function, the shortest path is via the intersection D2 and the conveyor C1. However, in case of 
a system failure, for example the break down of the conveyor C1, the pallet will not be able to 
reach its destination in the usual way. To handle this, the system has to be able to react on the 
new state. The ability of the system to change from its current configuration to another 
configuration—possibly without being taken off-line—is of highest importance. In case of 
presented system failure the system reacts as follows:  

1. The hardware of the system detects the failure using sensors. The low-level control 
informs the corresponding MA through the low-level communication interface. 

2. Based on the given information the agent updates its knowledge base and sends the 
“INFORM” ACL message to all related agents (diverter and neighbor agents) about 
the detected failure. Each diverter has to recalculate and update its routing table. 

3. Furthermore, the agent also sends a “FAILURE” message to the CA, which is 
equipped with the CDA algorithm, in order to check the system functionality.  

4. The CA starts the CDA and compares its results with the actual system state.  
5. In the case that the CDA recommends a new configuration, the CA updates its 

ontology, sends “REQUEST” message to related conveyor agents to change 
directions, and “INFORM” messages to diverters, updating the system representation. 

6. Each diverter will recalculate and update its routing table. Having accurate 
information and an up-to-date world model of the system is of primary importance for 
diverters. Due to their role to receive pallets coming from input conveyors and—
according to their destinations—to route them to the appropriate output conveyors. 

Figure 5.5: Simplified Scheme of the Transport System and MAS 
Framework 
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The reaction of the system on the failure of the index station I2 will follow the same 
procedure. However the CDA notices that the index station I3 is not reachable any more and 
suggest the direction change of the conveyor C5. 

 
5.5.1 Simulation Approach  

 

In order to test the effectiveness of the presented approach we have used the MAST, 
which is able to provide agent-based simulation support for our empirical study and the TMS 
is used for automatically running predefined sets of test cases described in XML files. A total 
set of 52 test cases were generated from the scheduling strategies as input to the TMS. Each 
test case has a workload of 7200 customer orders and applies FCFS (First Come, First Served) 
workflow scheduling strategy. A customer order consists of a particular product type to be 
built and a randomly generated due date that has to be respected. We defined three product 
types (simple, medium or complex) which differ in the type and number of machine 
operations needed to assemble the final product. The type of machine operation defines the 
related machine that has to be visited to accomplish the operation. To finish a particular 
product all related machine operations have to be completed and the product has to be 
delivered to the storage. The shift time for a test case was set to 24 hours in order to ensure 
that randomly selected customer orders could not easily be finished in the study context 
without an effective use of all available resources (same as in the chapter 4). In order to test 
the influence of the pallet jam, the performances of the MAS are also tested when different 
numbers of pallets have been available 
(5, 10, 15 or 20) for each test case 
respectively. Moreover, being aware 
that the failure duration as well as the 
position of the failed conveyor for the 
overall system could play a significant 
role on system output, we considered 
also these during the test case 
definition. We classified the risk of a 
failing conveyor in 4 failure classes:   

a) test case without conveyor 
failure; 

b) test cases, when one conveyor failed (C14) but all machines are reachable over 
redundant conveyor (C15) as presented in Figure 5.6; 

c) test cases, when two conveyors failed (C14 and C15) but the CDA is started and while 
conveyor C16 changes its directions the right side of the system becomes reachable 
again,  

d) test cases, when two conveyors failed and one part of system is not available for a 
particular amount of time. 
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Test cases with failures are further defined considering different duration of particular failures 
(15 minutes, 1 hour, 2.5 or 5 hours) respectively. Each failure type is introduced after 5 hours 
of uninterrupted work.  
 
 
5.5.2 Simulation Results and Discussion 
 

We use the number of finished products as reliable measure for efficiency of the 
system. The dependence of the system output on the number of pallets, failure type as well as 
failure duration is presented in Figure 5.7 (refer to Table 5.1 for more details). The diagram 
shows that the number of finished products proportionaly increases with the number of used 
pallets. Even when the conveyor C14 fails for a short period of time, due to the existence of 
the redundant conveyor C15 
that takes over its duties, this 
does not significantly 
influence the system 
performance. Nevertheless, 
this is the case when the 
number of used pallets is 
relatively low. Increasing the 
number of pallets over 15, the 
conveyor C15 becomes a 
bottleneck causing pallet jam 
and reducing the transport 
flow. This is especially the 
case when 20 pallets are 
used. Although, more pallets 
have been introduced, due to 
overload the system showed 
worse performance than 
when 15 pallets are used. In 
the case, when two conveyors 
(C14 and C15) fail at once 
and the right side of the 
transport system becomes 
unreachable, our system 
starts to reconfigure itself and 
automatically switches the 
direction of the conveyor C16 
in order to function properly.  

 

Figure 5.7: Number of finished products within a test case 

                               Number of Pallets  
                     
 Failure Classes 

Test case Failure duration

5 10 15 20 

a) No Failure a 1011 1965 2797 3440
b1 15 minutes 1010 1963 2792 3410
b2 1 hour 1008 1957 2785 3296
b3 2.5 hours 1003 1941 2768 3078

b) Redundant 
Conveyor  
Failure 
  b4 5 hours 998 1915 2737 2724

c1 15 minutes 1009 1961 2786 3398
c2 1 hour 1005 1954 2778 3269
c3 2.5 hours 1002 1936 2761 2998

c) CDA 
  
  c4 5 hours 996 1910 2723 2629

d1 15 minutes 986 1916 2726 3342
d2 1 hour 910 1768 2517 3044
d3 2.5 hours 760 1476 2433 2945

d) Part of  
system  
unreachable 
   d4 5 hours 513 996 1419 1750

 

Table 5.1: Number of finished products considering the 
Number of Pallets and Type of Failure 
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Nevertheless, this causes even more pallet jam than in the previous case (b), while C17 
cannot be used as redundant conveyor now, since C17 and C16 have to overtake the whole 
transport load from one side to the other of the transportation system. The system 
performance increases also here with the number of used pallets until the optimal number of 
pallets (for the presented Test bed layout this number is 15) is being reached. However, due to 
the traffic jam the system produced 2.6% products less operating within this state for 5 
consecutive hours. Consequently, when 20 pallets are used the number of finished products is 
decreased up to 23%, in comparison to the state when everything is functioning well. 
Nevertheless, the application of the presented CDA algorithm significantly improves the 
system efficiency of MAS when compared to the performance of conventional systems, which 
are presented in case d), and this particularly in the cases when the duration of failure is 
significantly long. Being able to automatically reconfigure the system layout, the presented 
MAS architecture outperformed conventional systems by producing 11.8% products more 
when optimal number of pallets is used and when the duration of the failure is 2.5 hours or 
even by 46.6% products more when the conventional system has to wait 5 hours on the 
external intervention. We are aware of the facts that diverse Test bed configurations, the time 
of the failure occurrence, combination of different failure types as well as the order of their 
appearance could result in different system performance from the presented and this is the 
reason we will consider these factors in our future work.  

 
5.6 Summary 

 
A specific failure scenario is applied to show the reconfigurative behavior of the 

system. By reconfiguring the behaviors of its physical components the system is able to 
ensure its global functionality even in the case of several component failures. The simulation 
results indicate that our approach is well suited for building complex systems to enhance the 
system efficiency. Moreover, even though the failures are induced in this implementation only 
in the KASA simulation environment, the system’s ability of selfreconfigurability is existent 
also for the real physical system. Only the graphical simulation would have to be substituted 
by the physical equipment resulting in minor changes to the LLC but without having to 
change the structure and reasoning of the HLC. 
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6. Simulation of the KASA Environment 
 

“He that would perfect his work  
must first sharpen his tools.” 

Kung Fu-tzu Confucius 
 

6.1 Introduction 
 

Simulation is a powerful method for performance evaluation and quality improvement 
of designed control solutions. Combining the agent based modeling and simulation, it is 
possible to tune the system behavior and choose an appropriate design before actually 
implementing it in the real system [Vrb05]. The areas in which such approaches are already in 
use, for instance testing the manufacturing scheduling, simulation of the packing cell, 
simulation operations in a rough mill, simulation of the manufacturing supply chain 
operations, etc., are previously presented in the second chapter. However, the manufacturing 
systems emerge and evolve very fast and exchange of accurate information and knowledge 
between entities within these systems is of highest importance, since the decisions made have 
to be based on exact information. The main limitation of the approaches mentioned above is 
the lacks of solutions for covering such dynamic information exchange.  

The importance of ontologies for development of intelligent knowledge based systems 
could be seen trough support of interaction mechanisms, insurance of interoperability between 
agents, re-use of knowledge and simplification of the solution development [Nec91, Hob87]. 
The technical challenges and benefits of using ontology-driven approach for simulation 
modeling, e.g., such as role in conceptual model design phase or role in simulation integration 
and simulation composability, have been described and presented by Miller and Baramidze as 
well as Benjamin et al.. However, these advantages are still not really explored by modeling 
and simulation communities [Mil05, Ben06]. 

 

6.2 Tools 
 

We used MAS as a simulation model to build scalable and flexible manufacturing 
system. MAS is recognized as a flexible and reusable modeling framework which enables 
rapid development of customized decision solutions for manufacturing [She00]. As said 
before, our simulation model employs the ontology concept represented in the OWL, which 
serves as a standardized mean for describing ontologies. We use Protégé-2000 [Stanf07] as an 
integrated software tool to develop both the ontology and the knowledge base. Protégé-2000 
is an open-source ontology and knowledge base editor designed by Stanford Medical 
Informatics at the Stanford University of Medicine. It is implemented in the Java 
programming language and can manage ontologies in XML, XML Schema, RDF(S), 
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DAML+OIL and OWL. Protégé-2000 
provides a plug-and-play environment and 
can easily be extended. Ontologies in 
Protégé-2000 can be handled through a 
friendly graphical user interface. We use 
Protégé ontology editor to design the 
ontology, create related instances of 
classes, and define attribute values (Figure 
6.1).  

The reasoning is implemented 
using the Jess expert system shell 
[Sandi07]. Java Expert System Shell 
(JESS) is a small and very fast rule engine 
developed by Ernest Friedman-Hill. It is 
based on CLIPS [CLI09] but written 
entirely in Java. JESS is a tool used for building the rule-based expert systems, which can be 
seen as a set of rules that can be repeatedly applied to a collection of facts about the world. In 
this context, a fact is identified as a construct that defines a piece of information that is known 
to be true. Rules are simple statements that consist of an if-part and a then-part. Jess applies a 
special Rete algorithm to match the rules to the facts. When the particular input information, 
which is coming from the environment, matches the facts in the if-part of the rule, particular 
actions, which are defined in the then-part, are executed. However, this can deduce new facts 
that could be a reason for firing of some new rules. Compared to the imperative one, the 
declarative knowledge is more reusable and modular, has better semantics and makes 
detecting and correcting contradictory knowledge easier [Gun04].   

We used a plug-in called JessTab to integrate Protégé with JESS [Eri03]. JessTab 
integrates these two tools by mapping Protégé instances to Jess facts and enables the JESS 
rules to fire when the appropriate conditions in the Protégé knowledge base are met. Using 
this plug-in, JESS can directly manipulate the ontology and instances and infer new facts 
deduced from them.  

The presented multi-agent architecture is built using the Java Agent DEvelopment 
Framework (JADE). The JADE platform is developed by the Telecom Italia Lab, in 
compliance with the standards defined by FIPA (Foundation for Intelligent Physical Agents), 
which is a non-profit organization involved at producing standards for the interoperation of 
heterogeneous agents. JADE is written entirely in the Java language, which simplifies the 
implementation of the presented multi-agent system with other tools mentioned above. The 
JADE platform enables each agent to manage its own life cycle, register its services, search 
for agents providing particular services, discover them and communicate with related agents. 
The JADE architecture enables agent communication through message exchange using the 
agent communication language (ACL) [Fou03] that is based on the speech act theory [Aus62]. 

Figure 6.1: Part of ontology (Machine Agent) 
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This agent platform can be also 
distributed across multiple hosts, 
where the inter-agent communication 
is managed by exchanging ACL 
Messages. Several JADE platforms 
can be indirectly connected over the 
DF Federation [Kop08f]. More 
information on JADE can be found at 
[JAD08]. The agents reasoning 
capabilities are incorporated into the 
agents using JESS. The integration of 
Jess component into a JADE agent is 
done by instructions written by 
Cardoso [Car09]. For the debugging 
and analysis of communication 
between agents and correspondingly 
for the manufacturing workflow 
observation, we used a tool called the 
Java Sniffer [Tic06]. The Java Sniffer 
is a stand-alone Java-based agent-
communication visualization tool, developed by Rockwell Automation, Inc., which. can be 
easily attached to running JADE system. It receives messages from all involved agents in the 
system and presents it from different points of view (Figure 6.2). The Java Sniffer supports 
the resolving of communication problems in system during development phase.  
 

6.3  System Integration 
 

In order to present the function of each software component of the system, we will 
observe activities of a representative part of the Transport System (Figure 6.3) in the case of a 
failure. It consists of diverters (D1 to D3), a junction (J1 and J2) and an index station (I1) 
interconnected by conveyor belts. The shortest path for the palette to I1, when all system 
components are functioning correctly, leads over D3 and J1. Considering that each diverter 
has accurate world model based on which it can calculate the shortest path, the system is 
going to route the pallet using this way. However, in case of a system failure, for example the 
break down of the conveyor belt between diverter D3 and junction J1, the pallet will not be 
able to reach the destination using this optimal way. To handle this exception, the system has 
to be able to reconfigure itself — to change from its current configuration to another 
configuration — without being taken off-line. For this particular case, the diverter D3, has to 
be:  

Figure 6.2: Java Sniffer: Negotiation between 
Supply and Machine (Robot) agents 
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1 informed about the failure, and  
2 able to maintain 

the knowledge 
about the system 
and recalculate the 
shortest path data 
table based on this 
new information.  

The information about the 
failure is sent to all 
related system 
components by CA, 
which is informed from 
corresponding MA that 
supervises the broken 
component. To enable 
faster system reaction, this MA informs usually also neighbor agents, as described before in 
section 5.5. All agents that receive this message should handle it in a similar way by 
maintaining their own knowledge base according to the received message and re(-acting) 
appropriate, when defined with rules. As a result the diverter D3 is able to reroute the pallet 
over the newly calculated route D3-D1-D2-J1-I1, thus preventing that the palette is stuck at 
junction J1 until the broken conveyor belt is replaced or repaired. 

To face this, every agent has to be able to sense and understand its environment 
(represented in the system-ontology), as well as to (re-)act on these inputs with a specific 
behavior (e.g. inform others by sending messages). This representation, where every part of 
the system is stored as an individual, is the fact base for the JESS engine. The JESS-engine 
maps all the instances of the system-ontology and handles them as facts. Based on these facts, 
the left hand sides of the agent’s rules, mentioned in the section before, will be evaluated thus 
activating the actions on the right hand side or not. This rule based agent behavior for 
handling the system evolution and for reaching the agents’ aims, which is coded in the JESS-
language, is one part of the agent behavior. The other part is the communication behavior 
which is influenced by the multi-agent framework JADE. JADE provides the agent lifecycle 
and the message transport service for sending ACL Messages. As any other class, each agent 
is stored as an individual in the ontology and as a fact in the JESS-fact base. Together with the 
JADE representation of the agent (JADE-Agent), this is the second representation of each 
agent (JESS-Agent) and we have to take care, that changes in one representation impacts the 
other in the same way [Car09]. To face this, we bind the JADE Agent to the JESS-Agent and 
integrate the JESS behavior into the JADE behavior like presented in Figure 6.4. Through 
this, the JESS-engine of the agent including the rule-based behavior is linked to the JADE 
agent cyclic behavior. This behavior enables each agent to fire its rules according to their fact-

Figure 6.3: Simplified scheme of the Transport System 
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base. As the communication between the agents continues, the fact bases of the agents are 
changing permanently. Each agent has rules to handle incoming messages and modify their 
ontologies.  
In the case that a JESS-Agent has to send a message to other agents, the system works as 
follows:  

1 The content of the message will be derived from the ontology and a Jess-rule will store 
it in an ACL-message template. This template is the interface between the ontology-
representation of the message and the message processed by JADE.  

2 A special send-behavior enables the JADE-Agent to prepare the message for sending 
through the distributed JADE runtime.  

3 In this step the ACL-message will be sent from one Agent to another Agent, 
independent from their location—either within one JADE-container, between two 
containers in the same platform or between different JADE-platforms.  

4 The message arrives in the message queue of the receiving JADE-Agent.  
5 It is processed and stored in the receive-slot of the Jess-Agent. For the purpose of 

allowing asynchronous receiving and processing of more than one message, the 
receive slot is implemented in form of a multislot. Otherwise, as experienced, message 
could get lost (deleted with other incoming messages).  

6 After receiving a JADE-ACL-Message the JESS-Agent maps this message 
automatically to the agent’s fact base, what causes that agent switches from the 
blocked state into the jess-behaviour-state and is able to fire its rules according to 
newly created facts. This behaviour is supported by the JADE function for receiving 
messages and it is essential for the system, otherwise the agent wouldn’t have the facts 
to fire on it. 

The messages are being exchanged between agents all the time, since the system is constantly 
changing its state and all system components have to have up-to-date information about its 
current status.  

Distributed JADE runtime

Agent-Rules
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Figure 6.4: Message conversion between JADE framework and JESS-Agent 
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6.4 MAST Simulation 
 

For the empirical studies of the system architecture performances presented in the 4th 
and 5th chapters, we used MAST simulation and Test Management System, whose features 
are in-depth described by Vrba et al and Merdan et al. respectively [Vrb08, Mer08d]. 
Considering the used JADE framework and similar architecture, we are further streaming the 
integration of the KASA and MAST simulations. The fundamental steps, which are already 
done in this direction, are presented in [Mer08e].  

 

6.5 Summary 
 

Simulation is a very effective way for testing different control architectures and 
improving quality of designed solutions. In our case the simulation has been used as an 
indispensable tool for tuning and validating the agents’ behaviour and knowledge. The most 
important aspect of this agent-based simulation is the possibility that the agent-control 
algorithms developed for the simulation model could be reused, in ideal case without any 
modification, for the actual real-life control. Using MAST enabled us to imitate the 
complexity of the real system in the simulation and to test different scheduling strategies 
much faster then in the real testbed. Moreover, the relations between different manufacturing 
parameters, such as throughput, tardiness, capacity, complexity of products assembled, could 
be established much more effective, at lower costs, and – what should not be underestimated – 
safer. We are able to confirm that the agent paradigm is suitable for building, modeling and 
simulating complex manufacturing systems. 
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7. Conclusion 
 
The current manufacturing control systems respond weakly to the emerging challenges 

caused by new technological developments and market demands. In order to stay competitive 
in the dynamic global market these systems have to be able to effectively react to sudden 
changes in customer demands, constant evolution of technology, and unpredictable events 
such as failures and disruptions. However, currently applied centralized control approaches 
are good in optimizing production but weak at responding to change, mainly because their 
rigid hierarchical structure.  

Intelligent agents offer a new distributed control approach that, using concepts of 
autonomy and cooperation, leads to more flexible and robust production systems. Agents with 
specialized expertise and high level of autonomy cooperate together to accomplish individual, 
as well as system objectives. Although confirmed as a promising approach and deployed in a 
number of different applications throughout the last few years (e.g. MAST, Production 2000+, 
etc.) the widespread adoption of agent-based concepts by industry and governments is still 
missing. As the main reasons identified, upon others, are the lack of awareness about the 
agent technology potentials, missing trust in it as well as lack of standards, methodologies and 
development tools that would simplify the integration of this technology in the manufacturing 
domain. We further presented challenges that should be solved in order to accelerate the 
adaptation of agent-based technologies. Achieving interoperability in the heterogeneous 
manufacturing environment, the transformation of received raw data into knowledge, the 
linkage of the agent-based system to real-time information and its integration with the FB-
technology as well as support of principles such as generality, reusability and long-term usage 
are defined as main challenges whose elucidation could further lead to the higher 
implementation rate and raise confidence in this technology respectively.  

To face requirements mentioned above we developed knowledge intensive multi-agent 
architecture applied in demanding assembly domain, where each agent has its own “world 
model” of the environment. The ontology is used to formalise agent knowledge and to 
describe the concepts and relationships that can exist within a multi-agent system. 
Incorporating semantics into the data, an ontology specifies the meaning of terms which are 
used during communication enabling knowledge interoperations between agents. Ontologies 
are also used to record actions and events as an explicit knowledge so that they can be 
analyzed afterwards. In the frame of this thesis we developed persistent ontology able to 
support knowledge exchange during the entire manufacturing process, from the ordering over 
production until the final shipment to a customer.  

As a basis for simulated architecture, we use the “Test bed for Distributed Holonic 
Control” at the Institute for Automation and Control, Vienna University of Technology. 
Considering the Testbed and defined layered manufacturing structure we created related agent 
classes. The established multi-agent architecture, focused on clear decentralization of the 
manufacturing system, was able to handle complexity of the used Testbed layouts during the 
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simulation tests reaching good system performances and increasing its agility compared to the 
present state of the art systems. This was especially notable in the planning process, where 
upon others, the ontological representation of the product model enabled agents to 
autonomously reason about the used concepts, linking automatically between product models, 
production processes and production equipments. Moreover, the ontology-based system 
model facilitated coordination between agents making system knowledge both machine-
interpretable and shareable at the same time. Besides, the implemented interface between 
agent and low-level as well as its ontological representation provides agent with ability to 
“understand” the exchanged messages with low-level control and correspondingly the 
acquired information from sensors and actuators.  

Considering the scheduling of production resources as one of the key features in the 
current competitive and dynamic manufacturing environment, we have done extensive tests 
applying our architecture and proving its effectives and efficiency. In order to create flexible 
scheduling able to cope with conflicts derived from the resources sharing among the 
production orders, we combined multi-agent approach with negotiation mechanisms for task 
allocation, where additionally each resource agent performs local scheduling using 
dispatching rules. The simulation study proved that the system was able to handle the 
scheduling and production process on its own. The measured system performance was 
particularly improved when we augmented the scheduling calculations to explicitly consider 
the transportation durations between the machines. We also measured system robustness by 
systematically comparing the overall system performance (e.g., number of finished products) 
when using one of four re-scheduling strategies in case of machine disturbances/failures. In 
the empirical evaluation the Complete Rerouting re-scheduling strategy outperforms all other 
strategies significantly. 

Since the concerns regarding the stability and survivability of multi-agent system, 
especially in unpredictable environments, are mentioned as one of the key reasons for weak 
implementation rate, in the fifth section we tested system failure tolerance, i.e., its ability to 
detect, isolate and recover from failure. We presented our failure tolerance approach that 
combines the heartbeat mechanism for failure detection and the supervisor agent approach for 
system failure absorption and recovery. The simulation results confirmed also system 
reconfiguration abilities and indicate that our approach is well suited for building complex 
systems to enhance the system efficiency. 

Bearing in mind the advantages of presented multi-agent architecture, we are aware 
the fact that this technology has to mature through real industrial applications, to establish 
multi-agent system’s ability to autonomously and faultlessly govern the entire manufacturing 
systems. On the one side we think that the agents’ ability to maintain an accurate internal 
representation of pertinent information about the environment in which it operates has to be 
further developed. However, this could significantly improve its self-monitoring and self-
control capabilities. In this regard it is of vital importance to define the constraints that the 
subsystems (e.g., sensors, actuators and operator control units) place on symbolic world 
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model representations as well as to specify the means to measure the quality of ontological 
representation for autonomous agents. 

On the other side, the capability of enterprises to form network organizations and 
cooperate with partners is an important factor for competitive market position. The 
information and knowledge exchange between partners play a critical role for the success of 
such networks. It is of highest importance to have an optimized information flow to find the 
appropriate knowledge source in the desired quality and in adequate time. In current 
networked organizations it is usually not transparent to the partners, which knowledge is 
available at which partner's site. Our proposal is to use semantic technology together with 
software agents in order to improve knowledge capturing, knowledge reuse and knowledge 
transfer in such networks. The development of the multi-agent architecture able to govern and 
support such networks is one of the biggest challenges. Moreover, considering the extremely 
heterogeneous nature of such environments the more serious work has to be done in the field 
of an ontology engineering e.g. merging and mapping.  

Finally, as successors of the idea that the best multi-agent system is the implemented 
one, we will continue further to stream its real life application.  We are currently developing 
the emulation for each particular component of the transport system and setting the basic 
preconditions (such as porting the selected software platform—JADE and JESS—to the 
embedded target platform) for the deployment of the developed MAS into the real system, the 
“Test bed for Distributed Control”, at ACIN’s Odo Struger Lab. 
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A. Rules 
 
In order to explain the rule-based behavior of our agents, in this section we will 

present a few simplified rules. Since the whole system has more than 200 of them, all other 
rules as well as the source code are available from the author upon request.  

After the agent of conveyor CC1 gets a message that the specific pallet enters it, the 
rule CA_add_newPallet will fire causing that this conveyor updates its knowledge base by 
adding the a new pallet in its hasPallet multislot (Figure A.1). The information about the 
pallet is included in the content of the message. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.1: Conveyor receives a new pallet 

 
A part of the conveyor ontology is presented in Figure A.2.  
 

 
 

Figure A.2: Part of the conveyor ontology 

Pallet CC1

inSensor

outSensor

CA_add_newPallet
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When the pallet leaves the conveyor, the CA_forward_Pallet rule will fire causing that 
the conveyor CC1 agent deletes the pallet from its knowledge base and informs the outNode 
agent about the approaching pallet (Figure A.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.3: Conveyor forwards a new pallet 
 

As a second example we will present rules where the pallet agents participate in a 
negotiation about a transport task allocation (Figure A.4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.4: Pallet Agent negotiation rule 

PalletCC1

inSensor

outSensor

CA_forward_Pallet
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After the SA sends the CFP to all free pallets in the system (in our case p1 and p2 as 
presented in Figure A.5), the conditions for firing the rule PA_negotiate_Task, which is 
presented in Figure A.4, are reached. The related pallet agents calculate the distance of their 
pallets to the destination and send their results as PROPOSE messages back to the SA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.5. Negotiation between the SA and pallet agents  
 
 



APPENDIX A. RULES  116

Since the distance of the p1 agent’s pallet (as presented in Figure A.5) is 65 and the distance 
of the p2 agent’s pallet (as presented in Figure A.6) is 21, the SA allocates the task 
>OP_transport_1_WO_Product_Order_459_Sub_Assemb_1a_Axle< to the p2 agent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.6. The bid of the p2 agent  
 
A part of the pallet ontology is presented in Figure A.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.7: Part of the pallet ontology 
 
After the pallet agent gets the CONFIRM message about the transport task, conditions for 
firing the PA_update_next_destination rule are satisfied (Figure A.8). The pallet agent 
deregisters its services at the DF agent and informs all RFID agents to reprogram its pallet to 
the new destination, when it passes by.  
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Figure A.8: Pallet agent updates the new destination rule 
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