
DISSERTATION

Knowledge-based Multi-Agent Architecture

Applied in the Assembly Domain

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

technischen Wissenschaften unter der Leitung von

Em.O.Univ.Prof. Dipl.-Ing. Dr.techn. Gerfried Zeichen

E376

Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Munir Merdan

Mat.Nr.0126292

Albrechtsbergergasse 5/4, A-1120 Wien

Wien, im März 2009 _______________________
MUNIR MERDAN

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

 i

Abstract

Today's manufacturing systems are often too inflexible and not sufficiently adaptable
to rapidly changing environments with unpredictable and abrupt fluctuation in product
demands or manufacturing downtimes. Moreover, such systems suffer from the weak
covering and exchange of the information and knowledge between enterprise levels.

Since the assembly participates with high percentage in the cost of manufacturing a
product and since the automation rate in this domain is very low, this is where the most
benefits can be gained by applying more flexible manufacturing paradigms. This dissertation
intends to develop innovative, agile control architecture to face the current requirements
imposed to the manufacturing enterprises in the assembly domain. Having their own problem-
solving capabilities and ability to interact in order to reach an overall goal, the autonomous
agents are considered as a promising approach to provide a suitable paradigm for designing
intelligent manufacturing systems to enhance flexibility and agility. We propose a knowledge-
intensive multi-agent architecture that enables ontology-based communication and
cooperation among a set of autonomous and heterogeneous agents. An agent, the main core of
our architecture, acts based on his knowledge, by sensing the manufacturing environment,
triggering the reasoning process, which selects the proper actions to be executed and that will
affect the manufacturing environment. Each agent has knowledge about his domain of
application, about strategies, which can be used to achieve a specific goal, and knowledge
about the (other) agents involved in the system. The agent is a representation of a
manufacturing component that can be either a physical resource (numerical control machine,
robot, pallet, etc.) or a logic entity (order, supply, etc.).

Having a shared ontology is critical for successful communication between agents,
since such a shared ontology provides the common agreement and understanding about the
concepts used. This offers the possibility for solving inter-operability problems. Therefore,
the ontology will be shared among agents and will serve as the instrument to define the
vocabulary used by the agents during their interactions, and to support “understanding” of the
message content in the sense of its correct interpretation. In particular, the essential
knowledge about the domain will be made available to the agents through an ontology.

 ii

Kurzfassung

Heutige Fertigungssysteme reagieren häufig zu inflexibel und unausreichend
anpassungsfähig an die schnell ändernden Produktanforderungen mit unvorhersehbarer und
plötzlicher Fluktuation sowie an die Produktionsstillstandzeiten. Außerdem leiden solche
Systeme öfters unter einer schwachen Informations- und Wissensversorgung sowie unter
schwachen Informationen- und Wissensaustausch zwischen verschiedenen
Unternehmensbereichen.

Aufgrund dessen dass die Montage einen hohen Anteil an den
Produktherstellungskosten hat und die Automatisierungsrate in diesem Arbeitsfeld sehr
niedrig ist, führt die Anwendung flexiblerer Produktionsparadigma in dieser Domäne zu
größten Nutzen. Das Ziel dieser Dissertation ist die Entwicklung einer innovativen, agilen
Steuerungsarchitektur um die gegenwärtigen Anforderungen, die die Montage einem
Produktionsunternehmen auferlegt, zu begegnen. Um ein gemeinsames Ziel zu erreichen,
können autonome Agenten Probleme lösen und miteinander kommunizieren. Mit dieser
Fähigkeit bieten sie einen viel versprechenden Ansatz zur Entwicklung passender Paradigma
für das Design intelligenter Fertigungssysteme und zur Steigerung derer Flexibilität und
Agilität. Unser Ansatz ist die Entwicklung einer wissensintensiven Multi-Agent Architektur,
welche die ontologiebasierte Kommunikation und Kooperation zwischen autonomen und
heterogenen Agenten ermöglicht. Ein Agent, das Kernstück unserer Architektur, agiert
basierend auf seinem Wissen, indem er das Produktionsumfeld und -Bedingungen analysiert
und den Schlussfolgerungs-Prozess auslöst. Dadurch wird die entsprechende Aktion
ausgewählt, welche in ihrer Ausführung wiederum das Produktionsumfeld und bzw.
Produktionsbedingungen beeinflusst. Jeder Agent verfügt über das Wissen über sein
Anwendungsgebiet, über Strategien, die verwendet werden können um ein spezifisches Ziel
zu erreichen, sowie über die im System beteiligten Agenten. Der Agent repräsentiert die
Produktionskomponente, die entweder ein physikalisches Ressource (numerisches
Steuerungsmaschine, Roboter, Ladeplatte, usw.) oder eine logische Einheit (Auftrag,
Zulieferung, usw.) sein kann.

Eine mitbenutzte Ontologie ist entscheidend für eine erfolgreiche Kommunikation
zwischen den Agenten, da sie ein gemeinsames Agreement und Verständigung über die
verwendeten Konzepte liefert. Dies bietet die Möglichkeit die Interoperabilitätsproblemen zu
lösen. Folglich, dient eine von Agenten gemeinsam benutzte Ontologie als Instrument dafür
ein von Agenten, während ihrer Interaktionen verwendetes Vokabular zu definieren und „das
Verstehen“ des Nachrichteninhalts im Sinne einer korrekten Interpretation zu unterstutzen.
Insbesondere, das wesentliche Domänewissen wird den Agenten durch die Ontologie
zugänglich gemacht.

 iii

Dedication

 Dedicated to the memory of Professor Bernard Favre-Bulle

 iv

Acknowledgements

At the beginning, I would like to acknowledge the contributions of a large number of

people, who in different ways have provided invaluable support for the completion of this
thesis.

Most of all I would like to thank my first supervisor Professor Bernard Favre-Bulle,
the professor, manager and samurai that embodied the best characteristics of all these
professions. He was the motivator and spiritual mentor for my work, suffering me with the
question “How is that better?”, but helping me also when I needed help the most. I wish I had
more chance to learn from him. Arigato gozaimasu Professor Favre.

I gratefully acknowledge the help of Professor Gerfried Zeichen, who overtook in
difficult circumstances the hard role of my first supervisor, giving me many insightful
suggestions that enhance the overall quality of this thesis.

I have been more than privileged to have Professor Vladimír Mařík from the Czech
Technical University as my co-supervisor who provided me valuable feedback concerning
this thesis.

This dissertation would not have been possible without my colleague Gottfried
Koppensteiner, who spent countless amounts of time and energy forcing the system to
function properly. He shared with me the same excitement when the agents behaved
appropriate and when I succeeded to drive snowboard 5 meters without a fall.

I would like to thank Dr. Alois Zoitl, Ingo Hegny, Christoph Ebm and other colleagues
at the Automation and Control Institute for their encouragement, discussions and suggestions
particularly in the field of Low-level control. Especially I would like to express my thanks to
Wilfried Lepuschitz for many valuable comments on earlier drafts of this thesis.

I have to express my sincere gratitude to Dr. Pavel Vrba from Rockwell Automation,
on whom I could always count on, for extremely qualified supervision, advices and critics on
the style and content of this thesis. Thank you for the inspiration and for proving that the best
multi-agent system is really – an implemented one.

Furthermore, I would like to thank Professor Stefan Biffl, Thomas Moser and Dr.
Dindin Wahyudin from the Institute of Software Technology & Interactive Systems for
working with me on distributed dynamic scheduling and the analysis of a range of workflow
scheduling strategies based on multi-agent negotiation.

I am also grateful to Dr. Vedran Kordic and Dr. Edin Arnautovic for various scientific
and technical debates as well as discussions about life in general we have had.

Significant contributions were provided by my students Lisa Vittori, Erhard List,
Gabriel Weidenhausen, Stephan Auer and Benjamin Grössing, to whom I would like to
express my heartfelt appreciation.

Finally, many warm thanks go to my family who provided constant and munificent
encouragement. Thank you for supporting me during all these years and for pursuing me to
finish this thesis as soon as possible. “Yes mother, one of my next serious projects will be
marriage!”

This research was financed by the Austrian Science Fund (FWF), Projects No.
FWFP19644-N13.

 v

Content

Abstract .. i
Kurzfassung .. ii
Acknowledgement..iii
Dedication .. iv
Glossary of Symbols and Abbreviations .. vii
1. Introduction ... 1

1.1 Background and Motivation.. 1
1.2 Approach ... 2
1.3 Application .. 3
1.4 Objective ... 4
1.5 Methodology ... 4
1.6 Thesis Outlines.. 6

2. State of the Art... 8
2.1 Introduction to manufacturing systems ... 8
2.2 Manufacturing Control .. 9
 2.2.1 Multi-agent Systems... 11
 2.2.2 High-level Control.. 14
 2.2.3 Low-level Control .. 19
 2.2.4 Weaknesses and Challenges of Agent-based Control Systems............................ 22
 2.2.5 Semantic Systems... 24
 2.2.6 Knowledge Representation .. 26
2.3 Planning and Scheduling... 28
 2.3.1 Planning.. 28
 2.3.2 Application of Agents in Process Planning.. 30
 2.3.3 Planning and Scheduling in the Assembly Domain ... 31
 2.3.4 Production Scheduling ... 34
 2.3.5 Integration of Process Planning and Scheduling.. 36

3. The KASA Environment .. 39
3.1 Introduction .. 39
3.2 A Manufacturing System .. 41
3.3 Layered Manufacturing System Architecture ... 42
3.4 The Multi-agent System.. 44
 3.4.1 Testbed ... 46
 3.4.2 Introduction of new Orders .. 50
 3.4.3 The Ontology.. 52
3.5 Agent architecture ... 55
 3.5.1 The HLC Architecture.. 56
 3.5.2 The Low Level Control .. 58
 3.5.3 Communication Interface between Agents and the Low Level Control 59
3.6 Implementation.. 61

 vi

3.7 Summary ... 61
4. Dynamic Scheduling in the KASA ... 62

4.1 Introduction to Dynamic Scheduling .. 62
4.2 Task Scheduling .. 63
 4.2.1 Task allocation ... 63
 4.2.2 Task sequencing ... 64
 4.2.3 Simulation approach... 64
 4.2.4 Simulation Results.. 65
4.3 Task Scheduling Considering Transportation Times and Conveyor Failures............... 67
 4.3.1 Task allocation and sequencing.. 67
 4.3.2 Simulation approach... 68
 4.3.3 Simulation Results.. 69
4.4 Re-Scheduling Using Machine Failure Handling Policies.. 71
 4.4.1 Re-scheduling Policies ... 72
 4.4.2 Research Issues .. 74
 4.4.2 Simulation Approach.. 75
 4.4.3 Experimental Results and Discussion .. 75
4.5 Summary ... 79

5 Failure Tolerance in the KASA... 80
5.1 Introduction to Failure Tolerance.. 80
5.2 Failure Types... 81
5.3 The Failure Handling Concept .. 83
5.4 Implementation.. 84
5.5 Reconfiguration Abilities of the KASA.. 87
 5.5.1 Simulation Approach.. 89
 5.5.2 Simulation Results and Discussion .. 90
5.6 Summary ... 91

6. Simulation of the KASA Environment.. 92
6.1 Introduction ... 92
6.2 Tools.. 92
6.3 System Integration... 94
6.4 MAST Simulation ... 97
6.5 Summary ... 97

7. Conclusion.. 98
8. Bibliography .. 101
Appendix .. 113

A Rules.. 113
B Publications ... 118

 vii

Glossary of Symbols and Abbreviations

ACIN : Automation and Control Institute.
ACL : Agent Communication Language.
AI : Artificial Intelligence.
AR : Agenda Rerouting.
CA : Contact Agent.
CAPP : Computer-Aided Process Planning.
CDA : Change-Direction-Algorithm.
CFP : Call for Proposal.
CIM : Computer Integrated Manufacturing.
CNP : Contract Net Protocol.
CR : Critical Ratio.
CR policy : Complete Rerouting Policy.
CRT : Critical Ratio + Transportation Time.
DCOM : Distributed Component Object Model.
DF : Directory Facilitator Agent.
DL : Description Logic.
EDD : Earliest Due Date.
ERP : Enterprise Resource Planning.
FB : Function Block.
FBA : Function Block Adapters.
FCFS : First Come, First Served.
FIPA : Foundations for Intelligent Physical Agents.
GA : Genetic Algorithm.
HB : Heartbeat.
HLC : High Level Control.
HLF : High-Level-Failure.
JADE : Java Agent Development Environment.
JESS : Java Expert System Shell.
KASA : Knowledge-based Multi-Agent System Architecture.
KQML : Knowledge Query and Manipulation Language.
LLC : Low Level Control.
LLF : Low-Level-Failure.
MA : Machine Agent.
MAS : Multi-Agent System.
MAST : Manufacturing Agent Simulation Tool.
NR : New Jobs Rerouting.
OA : Order Agent.
OWL : Ontology Web Language.
PA : Pallet Agent.
PLC : Programmable Logic Controller.
PP : Process planning.

 viii

RA : Rockwell Automation.
RDF : Resource Description Framework.
RDFS : Resource Description Framework Schema.
RMA : Remote Management Agent.
RS : Right-shift Scheduling.
RT : Real-time.
RT-UML : Real-time Unified Modeling Language.
SA : Supply Agent.
SIFB : Service Interface Function Blocks.
SPA : Shortest Path Algorithm.
SPT : Shortest Processing + Transportation Time.
SP : Shortest Processing Time.
TMS : Test Management System.
XML : eXtensible Markup Language.

CHAPTER 1. INTRODUCTION 1

1. Introduction

“Knowledge is of two kinds: we know a subject ourselves,
or we know where we can find information upon it.”

Samuel Johnson

1.1 Background and Motivation

The manufacturing sector, faced with the growth in the variety of products and at the
same time with a decreasing product life cycle, is forced by global competition to produce
customized products in a short time at low price. It has to be capable to effectively react to
sudden changes in customer demands, as well as to cope with unpredictable events such as
failures and disruptions. However, the current manufacturing control systems, due to their
centralized and hierarchical structure, respond weakly to the emerging challenges faced by
new technological developments and market demands. Such systems don’t have the ability to
economically handle manufacturing of several products and variants with small lot sizes.
They also have a limited capability for agile adaptation to unexpected internal and external
disturbances. The lack of flexibility and adaptability of such systems in situations when
particular resources become overloaded or unavailable directly influence the system
effectiveness. This is particularly caused by a need to switch parts of the system off-line and
recalculate previous plans and schedules according to the new system configurations, causing
the loss of time and delays in production.

Moreover the applied control systems, usually consisted of heterogonous units which
are using different type of data and data structures, are not capable to ensure the uninterrupted
flow of information between and sometimes through the controlled levels. The applied
methodologies in these systems are based on disconnected ordering, scheduling as well as
execution processes and lack agility needed for enterprise-wide integration. The process
planning is usually separated from scheduling as well as control activities and unnecessary
breaks between implicated systems are created, even though the outputs and data from one
application could be fluently used as inputs for another one. The committee on Visionary
Manufacturing Challenges identifies the information and knowledge that covers and is
exchanged between enterprise levels including the shop floor to be one of major challenges
that need to be addressed when manufacturing companies progress from the current status to
manufacturing in 2020 [Vis98].

In order to cope with the shortcomings mentioned above the new agile, more flexible
and robust manufacturing paradigm, capable to handle ongoing changes in a manufacturing
environment, changing rapidly system configuration and maintaining efficiency at the same
time, is required. The paradigm has to be able to dynamically optimize a production schedule
considering system capacity and time constraints. The concept should also support
interoperability and reduce time and costs for getting high-quality and accurate knowledge

CHAPTER 1. INTRODUCTION 2

through its information systems. Moreover, the concept has to be capable to integrate the
product and manufacturing system life cycle giving them a unified and understandable form.

1.2 Approach

It has been generally acknowledged that the multi-agent system (MAS) approach

offers a convenient way of modeling processes and systems that are distributed over space
and time, making the control of the system decentralized, thereby reducing the complexity,
increasing flexibility and robustness and enhancing adaptability to uncertainty and
disturbances such as machine failures, frequent changes in the shop floor layout and the
control system, etc [Bus04, She99, Vrb08]. MAS are composed of distributed heterogeneous
units/agents, where each agent manages its own activities on the basis of its local state and the
information received in messages from other agents or alternatively from human users (plant
operators).

We propose a Knowledge-based Multi-Agent System Architecture (KASA) that
enables ontology-based communication and cooperation among a set of autonomous and
heterogeneous units/agents. An agent, the core component of our architecture, acts on the
basis of his knowledge and by sensing the manufacturing environment. This triggers the
reasoning process, by which the agent selects proper actions to be executed that subsequently
influence the manufacturing environment. Having its own objectives, knowledge and skills,
each agent has the capability to reason in order to take decisions about its activities. It is
envisaged that adopting this control approach to manufacturing systems would improve
agility as well as reusability and reduce the development costs.

The crucial element in the decision component is the rule-based system, which applies
declarative knowledge, expressed in a set of rules to regulate the agent’s behavior. Agents
communicate and negotiate with each other in order to perform the operations based on the
available local information or to solve possible conflicts. The inter-agent communication
capability provides the essential means for the collaboration of the agents. In order to ensure
the correct understanding of the exchanged messages, all agents must have the same
representation of the environment, or at least that part of the shared environment about which
they are exchanging information with each other. Ontologies are of a vital importance for
enabling knowledge interoperations between agents and at the same time a fluent flow for the
different data from different entities.

In the proposed multi-agent system, each agent is an autonomous semantic entity
responsible for the maintenance of the local data described in its knowledge base. Each agent
is a representation of a manufacturing component that can be either a physical resource
(numerical control machine, robot, pallet, etc.) or a logic entity (order, supply, etc.). In
contrary to traditional manufacturing scheduling systems that are using centralized
scheduling, the proposed agent-based manufacturing scheduling system supports distributed
scheduling. Each agent can handle the schedule of its machine, operator, robot or station

CHAPTER 1. INTRODUCTION 3

locally. In addition, this system optimizes machine utilization and provides a platform to
enable the reconfiguration of manufacturing systems.

The major advantage of the proposed architecture is that using the ontology driven
solution in combination with intelligent agents offers a direction towards solving the inter-
operability problems within the manufacturing life cycle as well as between software
applications, such as process planning, process modeling, scheduling, workflow and
simulation. The proposed system automates the generation of process plans such that
functions as for instance task selection, shortest route determination, etc. can be performed
automatically through cooperation and coordination between autonomous agents without
involving the central unit. Furthermore, the advantage of the presented concept is that in this
knowledge-based system there is no need to define how a problem has to be solved (i.e. which
detail actions have to be taken), instead the problem and the goals to be reached have to be
described. The system then chooses on its own how to reach the goal.
Additional advantages of this approach are:

- Adaptation to disturbances - the agile response to unexpected manufacturing
disturbances,

- Re-use of knowledge, know-how and components, simplification of the solution
development,

- Addition of new components and knowledge, by avoiding re-design, re-programming
and re-initialization of the other components,

- High degree of flexibility, modularity and reusability of hardware and software
components,

- Generation of production tasks based on ontologies,
- Introduction of new products does not require significant time and efforts for

programming and adjusting the system,
- Achieving the preconditions for easy assembly and disassembly of products.

1.3 Application

The proposed concept is applied in the assembly domain, since the assembly activities
commonly make up on average 40% of product costs and 50% of production investments
[Del96]. This is where the greatest competitive advantage can be gained by introducing more
responsive manufacturing paradigms. Thus, the increased complexity of the manufacturing
domain is especially crucial in the assembly area, which involves a lot of manual work, copes
with shorter life cycles, many variants as well as smaller lot sizes of the product and is
therefore responsible for a major part of the manufacturing costs [Bed91, Del96].
Furthermore, an assembly system has to be able to react on internal disturbances which occur
during assembly and which endanger the operation of the system [Hei01]. There has been a
clear recognition of the need for agile, knowledge intensive assembly systems that can easily
absorb the required changes in product volumes, variety and manufacturing organization
[Hei00].

CHAPTER 1. INTRODUCTION 4

As a basis of the developed architecture, the existing “Test bed for Distributed Holonic
Control” at the Institute for Automation and Control1, Vienna University of Technology, has
been used and its structure and functions emulated. The Test bed architecture consists of an
automatic storage system with a handling unit for the extraction of parts, a pallet transfer
system with redundant paths, as well as a portal for the final assembly.

1.4 Objective

The primary scientific aim of this thesis is to investigate the applicability and
effectiveness of a knowledge-based multi-agent architecture for managing distributed
manufacturing systems. Furthermore, this thesis will also pursue research questions such as:
how does the ontology affect the development of a distributed manufacturing system, which
conditions should be fulfilled to support knowledge acquisition and sharing across its
heterogeneous sources, can the use of ontologies really solve the interoperability problem in
the manufacturing domain as well as which steps should be done and to ensure the easy
“agentification” of manufacturing components?
In order to find answers to the questions above this thesis pursues the following research
goals:

- Development of an innovative and agile architecture for distributed manufacturing
control systems,

- Establishment of semantic interoperability among heterogeneous, enterprise levels,
- Design and employment of a persistent assembly ontology,
- Employment of knowledge-based techniques for improvement of the decision making

process in intelligent agents,
- Creation of a facility that will enable the easier incorporation of agents into industry

applications.

1.5 Methodology

A multi-agent system is a complex software system and its design and development is
a complex process. This complexity is based on the distributed systems structure and reflects
itself through the behavior adjustment of the individual agents to form the emergent system
behavior. Several methodologies have been proposed for building MAS. The GAIA
methodology has been presented by Wooldridge et al. [Woo00], MESSAGE by Caire et al.
[Cai01] and Tropos by Giunchiglia et al. [Giu02]. Our approach for developing the KASA
architecture is fundamentally based on a methodology for modeling multi-agent systems
called Multi-agent Systems Engineering (MaSE) [DeL01]. The MaSE has been chosen since
it provides a complete lifecycle methodology for developing MAS. However, since the
mechanisms for the integration of ontologies and knowledge are not completely provided, we

1 http://www.acin.tuwien.ac.at

CHAPTER 1. INTRODUCTION 5

developed these missing parts. The development of MAS is divided into the following three
phases: analysis, design, and implementation (Figure 1.1).

The objective of the Analysis is
understanding the system and its structure
and the consideration of system requirements.
This phase identifies all system goals, the
manner how to reach these goals as well as
relations and hierarchy between them.
Besides, this phase divides the goals to
related tasks and specifies the scenarios of
their execution. Furthermore, the specific
roles that can be responsible for the
achievement of particular goals are also
created and related tasks to be performed are
assigned to those roles. These roles could be
later transformed to particular agent classes.
The phase finishes with the specification of
the interaction model to support the goal
organization that the system needs to
accomplish.

The Design phase essentially consists
of defining a solution for the system model,
which was previously specified in the
analysis activity. In the design process the
following activities have to be performed:

- Identification of the number and type
of the agents,

- Specification of the inter-agent
relations and the required interaction
protocols,

- Specification of ontology
requirements (content, knowledge
sources, potential users, usage scenarios, terms and potential relations between them,
etc.),

- Development and refinement of the system ontology,
- Creation of the agent structure and development of the knowledge for each specific

agent in the system,
- Analysis of the knowledge structure, preparation of validation scenarios and

application of test scenarios to evaluate the software.

Ontology
Devlopment

Agent
Identificaton

Knowledge Base
Development

Agent
Interaction

 A
nalysis

 Im
plem

entation
 D

esign

Interface
between Agent
and Low-level

Control

Low-level
Control

Real systemSimulation

SYSTEM

Requirements

Goals

Tasks Roles

State of the Art

Figure 1.1: Methodology

CHAPTER 1. INTRODUCTION 6

The system Implementation is started once the multi-agent system has been designed.
Simulation is an indispensable tool for tuning and validating the agents’ knowledge before
they are applied to the real system. At the beginning of the simulation tests, the problem-
solving and interaction abilities of the agents are investigated. After the instantiation of
specified agents and setting related parameters, simple tasks are use to check for
incompleteness in agents knowledge. The resolving of potential inconsistencies, redundancy
and conflict in the agent’s knowledge base enables to prevent possible. Furthermore, these
tests are used for testing and validation of simulation environment.

In the second ”Simulation for verification” phase, real assembly examples as well as
routing trainings are used to test and validate the distributed system’s functionality. The
agility and performance of the architecture are studied simulating different scheduling
scenarios as well as the failure of machines, particular agents or other system components e.g.
conveyers. The results of the simulation, the main scope of this thesis, will be used as an input
for the MAS improvement before its deployment in real-life control, which is our next future
task, and real system results will be used for improving the simulation.

Due to the system complexity, the classical waterfall development model was used
only for creating the basis system structure. We mostly used an iterative development process
between phases, since the feedback from one phase had a lot of influence to the others. The
feedback loop is used within as well as between the phases and repeated until the appropriate
design is reached.

1.6 Thesis Outlines

The thesis is structured as follows.

Chapter 2 is divided in two subsections. On the one side, the first part of the chapter
reviews the state of the art in the manufacturing area with a special focus on the
manufacturing control, the basics of knowledge modeling with a special focus on ontologies
as the crucial factor that captures semantics within the knowledge model as well as their
application in manufacturing domain are reviewed. On the another side, the second part of the
chapter gives the overview of the reported work related to production planning and
scheduling considering basic preconditions and requirements needed for their integration. In
this chapter, we also analyzed the recent research work done in the MAS domain specifying
advantages of the MAS and presenting the main weaknesses and challenges that need to be
solved.

Chapter 3 will describe the proposed multi-agent architecture and the role of each
agent within this architecture. This chapter will also present the underlying concepts used to
support the architecture comprising of a description of the system ontology, including the
organization and vocabulary definition as well as the definition of the low-level control layer.

The basics of dynamic scheduling are introduced within the Chapter 4, including state
of the art, requirements as well as the application scenarios. The scheduling algorithms and
the rescheduling strategies for the reaction to disturbances are presented as well.

CHAPTER 1. INTRODUCTION 7

Chapter 5 presents the system failure tolerance concept. The implementation and
experimental results, concerning stability and robustness of the system are reported in this
chapter.

Chapter 6 explains the realization of the proposed approach and briefly describes the
used tools as well as the way of their application.

Chapter 7 discusses the main results and the main achievements of this work. The
possible directions for further research are presented.

CHAPTER 2. STATE OF THE ART

8

2. State of the Art

“The farther backwards you can look,
 the farther forward you are likely to see.”

Sir Winston Churchill

2.1 Introduction to manufacturing systems

Over the history, manufacturing systems followed the evolution of the market trying to
accommodate the customer demands. It started with Eli Whitney in 1798, when he announced his
ability to produce, for that time, incredible 10000 muskets within 28 months. He pioneered with
the standardization in production of muskets by designing the templates for each musket’s part as
well as by adding machines for the production of interchangeable parts. However, although he
didn’t reach his aim - completing his contract 10.5 years later - he set the basis preconditions for
incoming mass production age [Boo05]. The basic principles of the mass production defined
Frederick W. Taylor developing methods for the measure and design of machining methods. He
used time and motion studies to analyze and split complex operations into a number of smaller
and repetitive tasks in order to increase the production efficiency [Tay11]. This age really started
when Henry Ford applied these principles and introduced a moving assembly line for producing
the Ford model T automobile in 1913, reducing the production costs and at the same time
increasing productivity and product quality [Bar04]. H. Ford could afford to say that “a buyer
could have any color of the car he wanted so long as it was black”, since he was able to offer the
affordable product to the insatiable market at that time. This system fell apart in the 1970s due to
bad attitude towards workers and its inflexibility to change according to customer demands
looking for more quality and for customized products at a favorable price. Responding to these
demands, the manufacturing domain invested more in automation and forced the "Just in Time"
concept pioneered by Toyota producing only what is needed when it is needed, looking also for
solutions in the emerging information technology based on computers called Computer
Integrated Manufacturing (CIM) [Har73]. Nevertheless, these showed expected results in the 80s
by evolving in Lean Manufacturing age which incorporated Japanese philosophy based on waste
elimination, permanent improvement and efficiency maximization [Wom90]. However, this
paradigm shows weaknesses when facing the continuous process of market changes characterized
by the shorter life cycles, many variants as well as smaller lot sizes of the product. Furthermore,
the global competition is forcing the manufacturing domain to produce customized products in a
short time and at a low price. All these requirements imply and increase the complexity of the
process control and planning, which are involving a huge amount of parameters that has to be
considered and combined with characteristics of modern technology manufacturing systems that
are already complex on their own. This increased complexity of current manufacturing systems

CHAPTER 2. STATE OF THE ART

9

together with dynamic conditions and permanent demands for flexible and fault-tolerant
functionality makes their management and control very difficult and challenging. Manufacturing
systems are expected to face all these requirements, achieving shorter lead-times and at the same
time coping with external turbulences (dynamic market changes and technological challenges) as
well as with internal disturbances (e.g. process failures or machine breakdowns). The new agile
manufacturing paradigm is seen as a concept able to help manufacturing systems to enter the new
production age [Kid94]. The concept of agile manufacturing offers the solutions that could enable
the manufacturing systems to be more concurrent, flexible, adaptive and capable to rapidly
reconfigure themselves. Gunasekaran defined agility “…as the capability to survive and prosper
in a competitive environment of continuous and unpredictable change by reacting quickly and
effectively to changing markets, driven by customer-designed products and services….” [Gun98].
The main strengths of the agile manufacturing paradigm are its concepts of a seamless
information flow from the product design over production until its final delivery to the costumer
as well as the new shop floor organization. The agile paradigm breaks also the company borders
forcing the creation of “competent enterprises networks” (virtual organizations), where each
company within the alliance offers specific services and products.

Summarizing this short overview it could be concluded that investments in innovation,
standardization and automation, which lead to an improved flow of products, data, information
and knowledge, have always brought the spearheads significant advantages in comparison with
others.

2.2 Manufacturing Control

The factory control is defined “…as the actuation of a manufacturing plant to make
products, using the present and past observed state of the manufacturing plant, and demand from
the market”. It is the fundamental system of a factory, because “It coordinates the use of the
factory’s resources, giving the system its purpose and meaning” [Bak98]. The manufacturing
control can be divided into low-level and high-level control [Chr03]. The high-level part of the
factory control is responsible for the coordination of the manufacturing resources and
government of the production including the ERP (Enterprise Resource Planning) as well as the
MES (Manufacturing Execution System) level. The low-level control is focused on the control of
the individual manufacturing resources and their reliable function during the execution of
operations organized on the high-level.

The manufacturing control architectures can be organized in a centralized, hierarchical,
hybrid or heterarchical way as presented in Figure 2.1.

CHAPTER 2. STATE OF THE ART

10

Figure 2.1: Control Structures [Lei04]

The centralized architecture is characterized by a central unit, which “sits” on a central
database that provides a global view of the system, and does the control, planning and scheduling
for a whole plant. The hierarchical architecture is built up in a pyramidal structure, where each
node has its own purpose and tasks. In this architecture the flow of commands is typically top-
down and the flow of information is bottom-up. The heterarchical architecture does not contain
any supervisory controller or any other hierarchical element. The hybrid architecture is a
combination of both hierarchical and heterarchical approach and allows direct communication
between nodes in the control pyramid.

In current manufacturing systems, the hierarchical or centralized structures are the most
commonly used system architectures. However, due to their rigid character and limited adaptation
capabilities such systems respond weakly to frequently changing customer demands in terms of
performing necessary changes in the manufacturing environment itself [Jon86, Par96, She99].
Present centralized and hierarchical control structures cannot dynamically manage the high
degree of complexity – their modification is a very expensive and time consuming process. This
is especially evident in the cases when certain resources become unavailable or additional
resources are introduced to the system, since their rigid structure hinders a flexible redesign of
the system. Additionally, the construction of a centralized system, due to large complexity and
the necessity to centralize all logic for sensing, actuating and control into a single entity, usually
requires a huge investment, long lead times, and in turn, results in generating a rigid control
system [Col06]. The central controller, as it needs to have the accurate information about each
unit in the system in order to make right decisions, can be seen as a single point of failure and its
breakdown could stop the whole system [Kro99]. Scheduling, in centralized and hierarchical
control structures, is established such that each level creates the scheduling for its subordinate
levels having a weak feedback from lower levels and almost without any consultation and
coordination with higher layers of neighboring units. Such an approach works well only if
everything goes as expected; otherwise it could completely fail when unpredictable disturbances
occur [Bus04].

Control Component

Manufacturing Entity

Centralized Hierarchical Hybrid Heterarchical

CHAPTER 2. STATE OF THE ART

11

The application of decentralized control architectures based on autonomous and co-
operative units is considered as a promising approach for overcoming the weaknesses mentioned
above [Fav04, Zei08]. Several emerging concepts like Holonic [Bru98], Multiagent [Jen98],
Fractal [War93] and Bionic architectures [Oki93] are proposed as paradigms capable to handle
the combinatorial complexity of manufacturing systems. These architectures, inspired by existing
natural or social organization systems, are based on distributed entities (i.e., holons, agents,
fractals or cells), which are using the self-organization principle to handle the system dynamics
[Tha96].

2.2.1 Multi-agent Systems

The multi-agent approach has been widely recognized as enabling technology for
designing and implementing the next-generation of distributed and intelligent manufacturing
systems [She01, Bus04, Pec08]. Multi-agent systems can be defined as a network of autonomous,
intelligent entities – agents – where each agent has individual goals and capabilities as well as
individual problem-solving behaviors. Due to their lack of a global system objective and
overview, agents have to cooperate and communicate with each other in order to achieve
common aims, which are beyond the individual capabilities and knowledge possessed by each
agent. This approach replaces a centralized database and control computer by a network of
agents, each endowed with a local view of its environment and the ability and authority to
respond locally to the environment.

The concept of an agent was invented in the domain of artificial intelligence (AI). There
are several definitions of an agent, however the definition from Wooldridge integrates most of the
agent characteristics “an agent is an autonomous software entity that functioning continuously
carries out a set of goal-oriented tasks on behalf of another entity, either human or software
system. This software entity is able to perceive its environment through sensors and acts upon it
through effectors, and in doing so, employs some knowledge or representation of the user’s
preferences” [Woo99]. An agent:

- can make its own decisions and act autonomously in order to achieve its goals,
- can perceive its environment or interact with other agents in order to get the accurate

environment representation,
- cooperates and collaborates with other agents, if it doesn’t possess knowledge and

expertise to accomplish its own goals;
- negotiates or competes with other agents in order to achieve better results,
- has the ability to acquire and to memorize new knowledge [Chr07].

Two different approaches for agent encapsulation in agent-based manufacturing systems are
known: the functional decomposition approach and the physical decomposition approach

CHAPTER 2. STATE OF THE ART

12

[She99]. In the functional decomposition approach, agents are used to encapsulate modules
assigned to functions such as an order, task, etc. In the physical decomposition approach, agents
are used to represent entities in the physical world, such as a robot, conveyor, pallet, etc. Based
on the agent’s behavior, the agents can be sorted into: reactive, deliberative and hybrid agents.
Reactive agents are observing the environment and act to its changes in a reflexive way without
maintaining any internal state or considering any historical information. These agents are usually
used in architectures which have to satisfy real-time constraints. Contrary to reactive agents,
deliberative agents behave like they are thinking, requiring accurate information about the status
of the environment as well as historical information in order to make action plans and to predict
the effects of actions. However, if the complexity of the problem significantly increases, their
reliability and real-time reaction becomes questionable. A hybrid agent is a combination of the
reactive and deliberative approach. Based on the mobility of an agent, it can be classified into a
mobile or stationary agent.

Several different agent architecture types have been proposed in the literature:
hierarchical, federate and autonomous [She07]. Hierarchical architectures correspond to the
currently mostly used hierarchical organization of manufacturing companies. The agents are used
to control particular components of the system, which are having hierarchical (master-slave)
relationships, and by simply copying their functionality, the hierarchical structure of the agent
organization is reproduced. The hierarchical type of organization could emerge by the usage of
functional decomposition of some processes or entities that naturally have such a kind of
structure (e.g. product order–work order–task, etc.). Within the federate based structures, the
facilitator and mediator approaches are known as most dominant. The facilitator approach
organizes agents in groups that communicate between each other through an interface called
facilitator. The facilitators are responsible for the communication layer organization, messages
translation, message routing and sometimes also for problem decomposition as well as
scheduling and coordination between agents. Characteristic for this architecture is that there is no
direct communication between the agents since the whole communication is transmitted over
group facilitator. The mediator approach is based on mediator agents that can offer their services
to all agents in the system. The mediators use brokering or recruiting mechanisms to find related
agents, applying sometimes different techniques to learn from the agents’ behavior. However,
once the required agent has been found the further communication can continue with or without
of interfering mediator agent which means that agents could communicate and cooperate directly.

The autonomous architectures are based on agents able to independently and individually
handle their actions and states. Having their own behaviors, knowledge about other agents and
environment representation, autonomous agents do not necessarily need the global overview to
reach their goals. However, in the case of large amounts of agents the system could become too
complex to be managed properly with highly unpredictable behavior.

CHAPTER 2. STATE OF THE ART

13

a) Communication
Communication is one of the essential ways for agents to build and maintain the accurate

representation of its environment. The exchange of the information enables agents to cooperate,
negotiate and coordinate their actions. However, in order to “understand” each other (e.g. to
interpret message correctly), agents need to use a common representation language and protocols
as well as to share the semantic content of the represented knowledge [Fin94a]. In this sense it
was necessary to develop an Agent Communication Language (ACL) that could be used as a way
for exchanging information and for the embodiment of message content. The most widely used
ACLs in multi-agent systems are the Knowledge Query and Manipulation Language (KQML)
[Fin94b] and FIPA-ACL [Fou03]. Both languages adopted the speech act theory as a basis for
agent communication [Aus62]. The speech act theory provides a clear way for expressing the
meaning of the communicative actions carried out by the agents defining the types of messages
and constraining the semantics.

The KQML has been introduced by the US DARPA’s (Defense Advanced Research
Projects Agency) Knowledge-Sharing Effort and is designed to support information and
knowledge sharing among intelligent software agents offering a message format and a message-
handling protocol. KQML is built on the open Internet standards and it is compatible with the
TCP/IP, SMTP, and FTP protocols.

The Foundations for Intelligent Physical Agents (FIPA) organization, formed to produce
software standards for heterogeneous and interacting agents and agent-based systems, presented
FIPA-ACL which is similar to KQML. A comparison of both languages has been done by Labrou
[Lab01]. A message written in FIPA-ACL consists of the following elements: performative,
sender, receiver, content, language, encoding, ontology, protocol, conversation-id, etc. The
fundamental elements are language, performative (e.g. INFORM, REQUEST, CFP, PROPOSE,
AGREE, FAILURE, SUBSCRIBE, etc.), content and ontology. In this dissertation, we used
FIPA-ACL for communication, RDF as content language and XML as an encoding syntax.
Nevertheless, the content of an ACL message received by an agent can be understood only if it
shares a common ontology with the agent that sent the message [Gun05].

b) MAS Advantages

Making the control of the system decentralized, intelligent agents offer a convenient way
of modeling processes and systems that are distributed over space and time, thereby reducing the
complexity, increasing flexibility and enhancing fault tolerance [Jen03]. It has been suggested
that the multi-agent system approach is especially adequate for the solution of problems with a
dynamic and uncertain nature [Ald04]. Nevertheless, the agent-oriented concepts are as well
suited for developing and extending complex, distributed systems by providing the most natural
means of representing the distinct individuals and organizations, suitable abstractions, the ability

CHAPTER 2. STATE OF THE ART

14

to wrap legacy systems and flexibility for organizational structure changes [Jen01]. Generally,
the introduction of agent-based techniques can bring the following benefits [Syc98, Sto00]:

- Robustness – sharing the control capabilities among the different agents, the system is
able to tolerate when one or more agents fail.

- Scalability – it is easier to add new agents possessing new capabilities to the distributed
system, than it is to extend the rigid structure of a centralized system by adding new
functionality.

- Reusability – the development and maintenance of a modular system is easier than of a
monolithic one. Agent classes with specific behavior to control particular manufacturing
equipment developed for one application can be further reused when developing another
control application.

- Parallelism – distributing the system and applying multiple agents can enhance the overall
system performance and provide time savings by deploying parallel computation.
Respecting its advantages, a lot of research has been done and reported with regard of the

Considerable research results have been achieved in the application of MAS to a wide range of
manufacturing tasks including low-level, shop floor control, process planning and scheduling,
information and project management as well as modeling of logistics systems, supply chains and
virtual organizations.

In the next few subsections we will elaborate the relevant and recent work related to the
manufacturing control area concerned with the high-level and low-level control. Furthermore,
weaknesses and challenges of current applications will be identified and some solutions
suggested.

2.2.2 High-level Control

One of the earliest MAS applications was the YAMS (Yet Another Manufacturing

System) system [Par87]. YAMS modeled a manufacturing enterprise as a hierarchical system
made of the following entities: plants, flexible manufacturing systems, workcells and, on the
bottom, workstations. In contrast to traditional hierarchical systems, each entity (here represented
as an agent) is able to not only negotiate with its parent and children, but also with its siblings as
well. Each agent has a collection of plans representing its capabilities and uses the Contract Net
Protocol (CNP) for inter-agent negotiation [Smi80].

Peng et al. presented a multi-agent consortium CIIMPLEX established for supporting the
intelligent integration of manufacturing planning and execution, especially in managing the
exceptions in business scenarios [Pen99]. Besides the common service agents, the gateway agent
is used to provide an interface between the agent world and the application world making
connections between the transport mechanisms and converting messages between the two

CHAPTER 2. STATE OF THE ART

15

different formats. The consortium introduces also several specialized agents such as data-
mining/parameter-estimation agents needed to prepare the aggregated information about low-
level activities for higher level analyses by other agents, event monitoring agents, which detect
abnormal events, the analysis agents that evaluate disturbances of to the current planned schedule
and recommend appropriate actions as well as the scenario coordination agents which assist
human decision making for specific business scenarios. The proposed multi-agent system is
demonstrated through an example integration scenario involving real planning and execution
software systems.

Oliveira [Oli94] implemented a heterarchical multi-agent architecture for an assembly
robotics cell. Intelligent sub-systems (agents) representing the specific functionalities are: task
planner, execution planner, object recognition systems, data base and world descriptor that
coordinates other agents’ activities in order to minimize the occurrence of conflicts.

The needs-driven AARIA (Autonomous Agents for Rock Island Arsenal) agent system,
developed for an Army manufacturing facility, encapsulates agents as representation of parts,
resources and unit processes [Par98]. Each agent interoperates with other agents in and outside its
own factory and uses the market-driven, inter-agent coordination approach for schedule
optimization. The agent infrastructure supports broadcast and multicast communication, subject
based addressing for inter-agent, location-independent communication as well as dynamic
mechanisms for agent creation, migration, duplication and termination. The AARIA architecture is
implemented on top of the Cybele agent infrastructure. The improved system performance related
to the systems agility and equipment utilization has been reported.

MetaMorph I is a multi-agent architecture for intelligent manufacturing built as a
federated organization [Mat96]. There are two main types of agents: resource agents (used to
represent manufacturing devices and operations) and mediator agents. The mediator agents have
the role of system coordinators and use brokering and recruiting communication mechanisms to
find related agents for establishing collaborative subsystems. To support coordination, the
architecture employs learning mechanisms for learning from the simulated future as well as for
learning from the history. With the objective to integrate design, planning, scheduling, execution,
etc. the MetaMorph II extends the previous MetaMorph I architecture and uses the hybrid
approach for organizing and integrating the subsystems at the highest level through special
mediators [She00a]. Each subsystem, which can be an agent-based system (manufacturing
scheduling, management, etc.), can represent a complex system that is composed of other
subsystems. However, agents in particular subsystem have the ability to communicate directly
with other subsystems or with the agents in other subsystems at the same or different levels. The
simulated architecture consists of four mediators: the Enterprise Mediator which is having
administration role registering all other mediators, the Design Mediator which is used to integrate
a feature-based intelligent design system, the Resource Mediator that provides the high-level

CHAPTER 2. STATE OF THE ART

16

coordination for a manufacturing shop floor, and the Marketing Mediator for the integration of
the customer services into the system. The applied architecture features a reduced
communication, easy integration of legacy systems and maintenance as well as considerable
flexibility and scalability of the system.

Bussmann and Schild reported the development of a flexible transportation system and the
associated agent-based control within the frame of the Production 2000+ project [Bus01]. In their
architecture, a specific agent is associated with each workpiece, each machine, and each shifting
table. The overall goal of the system is to continuously optimize the throughput while machine
agents manage buffer sizes, workpiece agents manage the processing state of a specific
workpiece and shifting table agents try to optimize the routing. The dynamic task allocation is
organized as an auction where workpiece agents sell their current tasks, whereas machine agents
bid for tasks taking into account the machine's current workload as well as the workpieces
leaving the machine. The system has been evaluated in a series of simulations based on real
manufacturing data (product types, processing times, disturbance characteristics, etc.). The
simulations have shown that the agent-based control is extremely robust against disturbances of
machines as well as failures of control units achieving a performance near to the theoretical
optimum. In addition, the control system has been installed in the DaimlerChrysler plant in
Stuttgart validating the results of the simulations under real manufacturing conditions. However
this installment has been removed after some testing time because of two reasons. First, the used
control hardware for the agent platform were standard PCs and therefore not suitable for an
industrial environment. Second and more severe problem was the inability of the maintenance
personnel to easily determine if the plant is working correctly or not because of the dynamically
changing resource allocation as a result of agent negotiation.

Rockwell Automation, Inc. has investigated and implemented agent-based solutions for a
number of industrial applications. One of the very first Rockwell Automation (RA) industrial
agent projects was to increase the machine utilization of a steel rod bar mill at BHP Billiton,
Melbourne in the mid nineties. The agent-based control was applied for the dynamic selection
and configuration of a subset of working cooling boxes and rolling stands to satisfy the recipe
requirements. In order to avoid the enclosure of the broken units in a subset, each cooling box
and rolling stand was represented by an agent with the capability to assess its own health and bid
on its part of the operation. Because of safety concerns and the anxiety of possible damage to the
equipment, the agent-based control system did not directly control the bar mill but instead
recommended a configuration to the human operator [Mar05a].

Another successful deployment of a multi-agent system by Rockwell Automation was the
distributed control of a ship equipment applied to reduce the manning as well as to improve
readiness and survivability of US Navy shipboard systems [Mat04]. The implemented system
architecture is based on three hierarchical levels: the Ship-level is responsible for ship-wide

CHAPTER 2. STATE OF THE ART

17

resource allocation and communication with the ship crew; the Process-level optimizes the
performance of the automation components and ensures the availability of services; and the
Machine-level, as the lowest one in the hierarchy, focuses on control, diagnostics and
reconfiguration of the shipboard equipment. The architecture of an agent consists of four main
modules: planner, device model, execution control, and diagnostic. A simulation environment as
well as physical, table-top demonstrator was built in the Rockwell Automation’s research
laboratories in Cleveland to allow testing the agent system functionality in a set of scenarios that
mimic the transactions of the real shipboard system. Subsequently, the agent-based control
system was successfully deployed on a physical, scaled-down model of the US Navy ship with
agents running on standard PLCs of Logix family. The applied architecture provides a simple
manner to establish system functions and dynamically emerging relationships among the system
components without pre-programming the relationships. Further achieved advantages of the
presented solution are: the system scalability, the ability to reconfigure complex systems in a fast
way (within seconds) and the ability to continue in operation with partially damaged equipment
[Tic06].

A simulation test-bed for the evaluation of agent-based distributed shop floor scheduling
and control system is presented by Brennan and O [Bre00]. The architecture consists of four
basic agents types, related to the basic holons used in the PROSA architecture [Bru98]: job agent,
station agent, machine agent and mediator agent. The job agent is responsible for initiating the
auction-based bidding process to find the resources for the job’s operations, and monitoring the
job’s production progress. The station agents are responsible for the task assignment to specific
machines, to monitor the production progress of the machines and to response to the job agent’s
bidding request. The machine agent, depending on the functional limitations of related low-level
controllers, controls a particular machine. It can perform either simple operations or participate in
a bidding process when bearing similar responsibilities as a station if the related related controller
has the information processing and communication capabilities. The mediator agent registers the
manufacturing resources and responds to the job agent's queries regarding which resource in the
system can perform a particular type of operation. The architecture is evaluated on a test bed
implemented in the Arena discrete event simulation package.

The multi-agent-system for production control of semiconductor wafer fabrication
facilities called FABMAS is reported in [Mon03]. Due to the physical decomposition of the
shop-floor into work areas and on the next level into machine groups that contain parallel
machines, the agent architecture based on PROSA [Bru98] is organized in three layers using the
following decision-making agent structure: single production system agents, multiple work area
agents and multiple machine group agents. There are also additional agents used for modeling
jobs and batches – they are not considered as part of a hierarchy and so they do not have any
communication restrictions. The discrete event simulator AutoSched AP is used to simulate the

CHAPTER 2. STATE OF THE ART

18

behavior of the wafer fabs shop floor which consists of over 200 machines that are organized in
about 80 different machine groups forming five work areas. The blackboard mechanism is used
to exchange the sensor and actuator signals between the simulation and the FABMAS agent
system.

Lastra et al. developed and applied the concept of intelligent mechatronic devices (actors)
to the assembly domain [Mar05]. This concept – Actor-based Assembly Systems (ABAS) – is
built on autonomous mechatronic devices (such as robot arms) that deploy auction- and
negotiation-based multi-agent control in order to collaborate towards a common goal. This goal is
a composition of simpler activities (assembly operations) which are the individual goals of the
particular actors. A 3D visualization and simulation environment for the emulation of actors
consists of two software tools: ABAS WorkBench and the ABAS Viewer. ABAS WorkBench,
used for both modeling and emulation of actors, provides the designers with the ability to
produce actor prototypes and experiment with them prior to the real implementation. The main
goal of the ABAS Viewer is to monitor the performance of ABAS systems, serving as a runtime
platform where actor societies can be deployed and visualized in a 3D environment.

Candido and Barata presented a multi-agent application developed to control a shop floor
system [Can07]. The approach that follows some guidelines from the CoBASA (Coalition Based
Approach for Shop Floor Agility) reference architecture [Bar05] is applied to the NovaFlex
manufacturing system at the Intelligent Robotic Centre in UNINOVA, Portugal. The system is
composed of two assembly robots, an automatic warehouse and a transport system that connects
all these modules. Each shop floor component is abstracted as a Manufacturing Resource Agent
(MRA) providing basic skills. More MRA agents can be aggregated to form a coalition providing
complex skills. The Coalition Leader Agent gathers coalition members' basic skills to find out
what complex skills (composition of elementary skills) could be supported by the coalition. The
architecture provides also the Broker Agent, which gathers information from the environment and
supervises/supports the process of creating the coalition. In order to maintain MRAs
independently from a particular controller, a software Agent-Machine Interface wrapper is used
to execute the skills exposed by the MRA and in order to abstract the lower level interaction with
the hardware. An ontology is used to ensure an accurate information exchange, as well as to
define the domain and relations between entities.

The successful deployment of the Manufacturing Agent Simulation Tool – MAST – in the
manufacturing testbed at the Automation and Control Institute (ACIN), Vienna University of
Technology (Figure 2.2) has been reported by Vrba et al. [Vrb08]. The MAST system is used to
control the physical palette transfer system of the testbed consisting of 14 conveyor belts, 12
diverters, 4 docking stations and a number of sensors and stoppers. Three types of agents are used
for representing the physical components (diverter, conveyor and docking station), whereupon
each component has its own agent instance associated. The conveyor system is used to transport

CHAPTER 2. STATE OF THE ART

19

Figure 2.2: MAST application on the palette transfer system of the Odo Struger laboratory
(ACIN, Vienna University of Technology)

the palettes carrying raw materials or products between the docking stations, where the palettes
are held until a particular manufacturing process is finished. The palettes are routed by the
diverters that use reachability knowledge to send the palette to its required docking station at the
lowest costs. The pallet agent selects the next docking station by searching the Directory
Facilitator (yellow-pages services provided with the agent platform – JADE in this case [JAD08])
for a list of registered docking station agents. A failure scenario was tested – after a conveyor had
failed (by turning off its drive), the conveyor agent notified its neighboring agents (representing
for instance diverters or docking stations) that the conveyor is not available any more.

Subsequently, the agents started to look for alternative routes for pallets to avoid the broken area.
To increase the level of robustness of the deployed control system against non-determinism and
disturbances of the real world, an embodiment of diagnostics to the agent as well as to the low-
level control parts has been suggested.

2.2.3 Low-level Control

Applied in the manufacturing environment, the control system has to pay attention to the
real world conditions and run under real-time constraints. The outcome of the performed action is
not only based on the related reasoning but also on the time within which the action is executed.
This is particularly important for subjacent embedded systems due to their responsibilities for
directly dealing with the environment and synchronizing of their operations. These systems have

CHAPTER 2. STATE OF THE ART

20

to be able to observe the variation of the environment in order to immediately execute a set of
certain actions or to send the accurate information to the high level agent-based control system.
The linkage between the physical pieces of equipment controlled by the agent and the specific
agent itself, is seen as a key characteristic of the application of agent technology for industrial
control purposes [Vrb08].

One suggested approach is coupling the control and automation functions, whose response
times range from 10 to 100 ms, in to the Low Level Control (LLC) layer as suggested by
Christensen in the HMS architecture [Chr03]. The LLC is a user defined software application
based on the IEC 61131-3 [IEC31] or IEC 61499 [IEC99] standards, which governs the actions
of the subjacent physical system. The LLC is responsible for acquiring system information via
sensors, executing particular control actions and sending signals back to actuators to carry out an
action in the physical world. The LLC layer interacts with the HLC (High Level Control) layer.
The HLC delegates particular tasks to the LLC and thus indirectly controls their execution. On
the other hand, the LLC informs the HLC on the fulfillment or failure of the delegated tasks. For
example, the Index station agent residing in the HLC instructs the LLC to hold a particular pallet
when it arrives or requests to release it after the robot finishes a particular operation. On the other
side, the LLC fixes the pallet when it arrives and then informs the agent about the arrival. The
LLC can also diagnose some kind of failure (e.g. climb stock) and inform the agent about it. Built
on top of the mechatronic components, the LLC layer runs on real-time embedded control
equipment which includes the interfaces to the mechatronic components and the control
application. In the case of industrial automation such equipment is typically a Programmable
Logic Controller (PLC). Based on the currently most used IEC 61131-3 standard [Joh01] for
programming PLCs, several concepts have been applied to establish these interfaces: Function
Block Adapters (FBA), COM/DCOM technologies, black board or data table sharing. The first
concept uses FBAs as interface between Real-time Unified Modeling Language (RT-UML)
capsules and IEC 61131-3 function blocks. The behavior of an FBA is expressed by the special
FBA-Language which defines operations which are called when signals arrive from a port or
from the function block [Hev01].

The design and realization of an agent-oriented control system based on DCOM
(Distributed Component Object Model) in simulation and under real shop floor conditions was
done by DaimlerChrysler AG within the frame of the Production 2000+ project mentioned earlier
in this thesis. A specific COM module, which encapsulates the algorithm for any agent type, is
linked at runtime to a DCOM-based communication framework enabling the interactions with
PLC programs controlling operations of the physical hardware [Sch00]. The discrete-event
simulation model of a manufacturing system developed in C++ that utilizes COM/DCOM
technology is presented by Brennan and O [Bre00]. The agents, encapsulated in COM objects,
represent specific entities in the production system that is simulated in the Arena framework.

CHAPTER 2. STATE OF THE ART

21

Agents, distributed over a network of computers communicate with Arena using the remote
procedure call [Bre00]. The Agent-Machine Interface is the agent wrapper developed using
DCOM and used in the NovaFlex environment to keep the agent behavior independent from the
implementation details of the specific low-level control actions performed on PLC controllers.
PLC manufacturer's proprietary Java interface libraries are used for reading and writing tags the
Beckhoff PLC over the Ethernet to interact with IEC 61131-3 control programs [Can07].

Concerning MAST, the data-table concept is used for the implementation of the PLC-
based control interface enabling the agents to interact with the physical system. The I/O values,
transferred via the DeviceNet industrial communication network and stored in ControlLogix PLC
tags, are directly accessed by MAST agents to allow monitoring and controlling of particular
physical components [Vrb08]. Testing this architecture on a physical palette transfer system
installed at the Automation and Control Institute (ACIN) at the Vienna University of Technology
acknowledged the need for the underlying LLC layer for handling the low-level real-time
activities. The agents (implemented in Java/C++), directly handling I/Os without presence of a
LLC, revealed insufficient capabilities for meeting the hard real-time constraints. The
recommended solution is to let the agents making global decisions and leave the low-level
control subsystem to transform these decisions into the corresponding actuation in the real world.

A similar approach was presented by Rockwell Automation within its Shipboard
Automation project. The Autonomous Cooperative System (ACS) architecture (implemented in
C++) was introduced to provide an agent runtime environment for the standard Rockwell
Automation ControlLogixTM and FlexLogixTM controllers. The firmware of the controllers was
modified to enable hosting of 1-to-n of intelligent agents directly inside the controller. The ACS
infrastructure enables also the distribution of agents over multiple controllers where they run in
parallel and interact with the low-level control tasks (written in IEC 61131-3 ladder logic) by
accessing the data-table of the controller [Mat04].

The control architectures for real-time and distributed manufacturing systems set a focus
to a number of functionalities such as: autonomy, flexibility, reliability, fault-tolerance,
interoperability, re-configurability, etc. The applied conventional systems, which are
predominantly programmed according to IEC 61131-3, suffer often from a lack of these
requirements [Wan98]. The system’s flexibility and disturbance handling capabilities of IEC
61131-3 are limited due to its centralized nature and difficulty to manage changes dynamically
[Bre07]. Furthermore, the cyclically scan-based execution model of its programs is sensitive to
the order in which functional elements are placed in the program and specific complex
synchronization problems in distributed environments could occur. Especially timing software
switches as well as synchronizing internal states are complicated [Zoi06a]. Moreover, the
insufficient resource replacements and only predesigned reconfiguration scenarios embedded in
the application hinder its wider application in distributed environments.

CHAPTER 2. STATE OF THE ART

22

The new standard – IEC 61499 [IEC04] – introduces event-driven function blocks (FB),
offering a framework for the integration of run-time control, diagnosis applications as well as
simulation for distributed automation [Vya02], and provides basic support for reconfiguration at
runtime [Zoi06b]. Although many researchers have already been investigating different aspects
of IEC 61499, the absence of tools and products that are compliant with this approach is evident
[Thr05 and Zoi07]. An important aspect of this research is the establishment of a run-time
communication interface allowing the transfer of information from the real-time control
subsystem to the agent-based high-level control layer and vice versa. Two recent papers have
reported the deployment of such an interface. Lopez and Lastra used IEC 61499 to build a low-
level FB application, which controls the environment by accessing the sensors and actuators, and
which enables the agent level to perceive the environment [Lop07]. Special interfaces were
developed that allow the communication interaction between components as well as internal
communication between the low-level FB control and the high-level agent layer. A similar
approach was reported by Hegny et al. [Heg08] that proposed the ontological representation of
the communication channel and the message type to the agent level. This representation gives the
agents the ability to reason about the purpose and meaning of the messages exchanged with LLC
(e.g., sensor status information, device diagnostics, etc.).

2.2.4 Weaknesses and Challenges of Agent-based Control Systems

Although confirmed as a promising approach and deployed in a number of different
applications over the past few years, the widespread adoption of agent-based concepts by
industry and governments is still missing. The following weaknesses could be pointed out as
main reasons for that:

1) Lack of awareness about the potentials of agent technology in industry as well as the
absence of publicity of successful industrial projects [Pec05].

2) Lack of standards and methodologies that could simplify the integration of this
technology in the manufacturing domain.

3) Missing trust in the idea of delegating tasks to autonomous agents [Syc98], especially
considering emergent behavior of the overall control system (an aggregation of “small”
behaviors of particular agents) that can hardly be predicted at the design time [Par97].

4) A “pioneer” risk, which accompanies every new technology that has not been proven in
large scale industrial applications [Pec08].

5) Lack of design and development tools mature enough for industrial deployment [Pec08].
6) Paradigm misunderstanding due to the lack of real industrial applications [Can07].
7) Current applications are custom-developed for every single implementation, which means

that costs can be spread neither over multiple customers nor over time [Val04].

CHAPTER 2. STATE OF THE ART

23

8) Concerns regarding the stability, scalability and survivability, especially in unpredictable
environments of attacks and system failures [Hel04].

9) Increased complexity of the software structure; due to the fact that in distributed
environments each entity has to have the accurate status of the environment in its
application domain, corresponding mechanisms have to be introduced to ensure the
reliability of the environment representation and the functionality of the system.

Additionally to the weaknesses mentioned above, we also present research challenges that have
to be fulfilled and considered to make a progress in the development and adoption of agent
technologies:

1) Achieving interoperability in the heterogeneous manufacturing environment is one of the
most important challenges for distributed manufacturing control systems. Interoperability
is considered as the seamless flow and share of data, information and knowledge among
heterogeneous entities as well as among subordinated information systems. Semantic
systems and ontologies as presented in Sect. 2.2.5 are expected to provide effective means
for fulfilling these ideas.

2) A further challenge is the linkage of the agent-based system to real-time information and
its integration with the FB-technology [She06]. The inability to maintain an accurate
representation of the environment in which an agent operates hinders effective task
planning and execution.

3) Direct transformation of received raw data into knowledge compliant with formally
defined semantics and effective reasoning on this data is also considered as a big
challenge [Vis98]. According to Morel et al. “a form of technical intelligence that goes
beyond simple data through information to knowledge is required. Such technology
embedded into manufacturing system components and within the products, will play an
essential role to reach agility in manufacturing over flexibility and reactivity” [Mor05].

4) “To enable two devices with no previous knowledge on each other’s type, conceived using
different paradigms and interaction models but still with complementary skill sets, to
interact autonomously” [Las06].

5) The support of principles such as generality, reusability and long-term usage is seen as an
important future challenge for software specifications [Val04].

6) Introduction of tools, techniques and methodologies which ensure easier and more
abstract ways of agent system development, modification and management will lead to a
higher rate of acceptance as well as “understanding” of the concept.

7) Assurance of security and trust in agents is a significant aspect to be considered in future
solutions [Pec08]. Being applied in the manufacturing domain consisting of heterogonous
entities and/or organizations, agent technology has to provide confidence that performed
actions are done safely and effectively.

CHAPTER 2. STATE OF THE ART

24

Summarizing the challenges it can be pointed out that besides the requirement for more efficient
techniques and tools, the information and the ways of its handling are placed in the focus of
future research. Completely new approaches where the information will be not treated as a
“bunch” of strings and numbers but will be embedded with semantic providing the basis for its
better “understanding” are required. Almost the same weaknesses detected by agent systems
could be specified by the introduction of the IEC 61499 standard in the industry. However, the
open problems as well as key research topics have been listed in depth by [Bre07, Thr05, and
Zoi07].

2.2.5 Semantic Systems

Being applied in distributed and heterogeneous environment and having only its partial

representation the agents have to communicate with each other in order to coordinate their
activities. Ontologies have been developed and investigated for quite a while in artificial
intelligence and natural language processing to facilitate knowledge sharing and reuse [Kul05].
They are of vital importance for enabling knowledge interoperations between agents and, at the
same time, a fluent flow of different data from different entities. Ontologies allow the explicit
specification of a domain of discourse, increasing the level of specification of knowledge by
incorporating semantics into the data, and promote its exchange in an explicitly understandable
form.

An ontology is defined as an explicit specification of conceptualization [Gru93], where
conceptualization means the shared view of environment representation. From the viewpoint of
inter-agent interactions, the explicitly defined and commonly accepted ontology is an
indispensable tool for ensuring interoperability between agents in the sense of providing a
formally defined specification of the meaning of those terms which are used during the inter-
agent communication. Ontologies can also capture actions and events in a uniform and
processable way so that they can be recorded in time and further analyzed.

An ontology includes classes, slots, relationships between classes, constrains about these
classes and individuals. Classes represent a specific concept within the domain of interest. Slots
represent properties of the classes. Constraints are used to define allowable values and
connections within an ontology (Figure 2.3). Individuals are specific objects that instantiate the
class and inherit its properties and relationships. If used for the description of complex domains,
an ontology requires choice of an expressive language able to represent a particular domain.
UML [UML], any object oriented language, or any other type of representation which can define
objects, properties and its relations can be used for ontology representation. Several languages
were developed for the promotion of knowledge representation and sharing as well as for data
integration such as RDF [RDF], DAML+OIL [DAML] or OWL [OWL]. Currently, the mostly

CHAPTER 2. STATE OF THE ART

25

Conveyor

Intersection

Intersection

Agent

inNode

outNode

controlledBy

Name

Speed

Length

Class Level

...

HappyJunction

CrazyDiverter

LuckyConveyor
Agent

inN
od

e

outNode

controlledBy

(Name= „LuckyConveyor"

(Length = „2")

(Speed =„22")

Instance Level

used standard ontology language is OWL (Ontology Web Language). OWL is recognized by the
Semantic Web community [W3CSe] as a best suitable for ontology representation. It is written in
XML format that enables a common, well-defined and easily processable syntax but does not
involve semantic into the date description by itself [Bray00].

Figure 2.3: Conveyor relations and properties

For this purpose the Resource Description Framework (RDF) and Resource Description
Framework Schema (RDFS) languages are used to describe interrelationships among resources in
terms of named properties and values. OWL also supports the construction of distributed
ontologies and offers the ability of accessing to a particular part of the ontology in order to update
and revise it without interrupting the integrity of the top-level system ontology. OWL provides
three increasing levels of expressivity in OWL Lite, OWL DL, and OWL Full respectively. This
allows users to define their own needs for expressivity and chose a language version that supports
their needs best. Due to its tight connectivity to RDF and since our approach is much more
concentrated on the usage of rules for reasoning and less on Description Logic (DL), which can
be used to determinate the semantics of OWL, as well as the decidability and complexity of basic
inference problems, we will use the OWL Full for ontology representation in our approach.

Various ontologies have been developed to capture particular fields in the manufacturing
domain:

- the OZONE ontology [Smi97] is devoted to constructing scheduling system,
- the Enterprise Ontology aims to define the overall activities of an organization [Usc98],
- the TOVE Ontology focuses on the enterprise modeling [Fox98],

CHAPTER 2. STATE OF THE ART

26

- the “Machine Shop Information Model” is intended for representing and exchanging
machine shop data, initially between manufacturing execution, scheduling, and simulation
systems [McL05],

- Process Specification Language (PSL) covers generic process representation common to
manufacturing applications [Grü05].

On the other hand, ontologies like MASON [Lem06] and the ADACOR [Lei04] could be
classified as general-purpose manufacturing ontologies. An interesting standardization initiative
has been started by the OOONEIDA consortium establishing the framework for both the
hardware and the software interoperability at all enterprise levels. The product data, which
encapsulates intellectual property along with appropriate semantic information, is collected from
the manufacturer and integrators in order to set a searchable repository and ease the work of
related intelligent repository agents [Vya05]. The complementary work has been reported by
Lopez and Lastra, which merged separate ontologies for mechatronic devices reference models
(covering both the hardware and the software features) and the IEC 61499 reference model
respectively into the ontology for the Automation Objects reference model [Lop06].

Nevertheless, ontologies have been rarely used in combination with software agents and
in most of the existing multi-agent systems the agents are not aware of ontologies at all since the
information processing and reasoning are hard coded in the agents’ behaviors. Although
important standardization work has been done by introducing the message transport service for
sending FIPA-ACL Messages [Fou03] by defining message types, performatives protocols, etc.,
the agents are not able to semantically interpret the domain-specific content of the exchanged
messages as well as the knowledge held by the other agents [Qiu05].

2.2.6 Knowledge Representation

In order to work effectively and efficiently an agent has to maintain an internal “world
model” of the environment in which it is embedded and to keep this model sufficiently consistent
with the real world [Woo86]. It means that the agent’s knowledge has to be accurately
represented in the agent’s world model. In this content the knowledge representation is used to
define the formalization of captured knowledge using a machine-readable form. There are three
kinds of knowledge representation: tacit, implicit and explicit. Tacit knowledge is more personal,
context-specific, and difficult to represent and explain since it contains skills, ideas, experiences,
etc. Implicit knowledge is mostly embedded in the agent’s control and sensory processing
algorithms. Knowledge is explicit when it is separated from the algorithm that uses the
knowledge [Dav94]. The well known usage of implicit knowledge is in Brook’s subsumption
architecture for the control of mobile robots [Bro86]. Presented reactive agents do not store any
information about the world in their memory and decide what to do based on the current sensor

CHAPTER 2. STATE OF THE ART

27

values. Brook’s reactive agents quickly respond to changes, since there is no time consuming
deliberation process and far less amount of information is considered. Nevertheless, the low
flexibility of such agents in a dynamic environment, when they have to deal with incomplete
knowledge, as well as their fragile problem solving abilities are mostly the result of the explicit
knowledge deficiency. Moreover, in a dynamic, physical environment with real sensors, implicit
representation can be computationally expensive and/or impractical since complete environment
can not be observed at any time [Wass99]. On the other hand, although considered as complex
and inefficient, the explicit knowledge is flexible and general, since it can be easily coded into
information. The application of agents, which use the explicit knowledge for world model
representation, can reduce the system complexity and enable system scalability especially
through the interrelation of the agents’ world models.

Semantic systems offer a convenient way for the representation of distributed and
interlinked explicit as well as tacit knowledge. The usage of ontologies for knowledge
representation, sharing and high-level reasoning could be seen as a major step ahead in the area
of agent-based control solutions [Obi02]. The exploitation of semantics and ontologies in the area
of agent-based industrial systems has become the hot topic in the last few years due to the
success and good promotion of the semantic web, which is the World Wide Web extension where
the information is given well-defined meaning, to enable better communicate between computers
and people [Ber01]. The ontologies are considered here as an essential technology for semantic
web development guaranteeing data and information interoperability in such extensive
heterogeneous and content rich environment. Related to its application in multi-agent systems, an
ontology developed to describe the NovaFlex shop floor assembly domain and used as
knowledge source for the multi-agent system is reported in [Bar05]. Two basic categories of
concepts are proposed: modules and skills. The interesting application of an ontology developed
for agent-based reconfiguration purposes is reported by Al-Safi and Vyatkin [AlS07]. The basic
ontology concepts used here, are material resource and operation. We presented the application of
an ontology in combination with multi-agent technologies in the transportation domain by
simulating the assembly of products [Mer08]. The reported ontology introduces agent classes in
addition to resources, activity and operation concepts. An ontology-based interoperability
framework for the management of a distributed industrial manufacturing environment is proposed
within the frame of the running PABADIS' PROMISE project [Kal07]. The proposed ontology
aims to formalize conceptual information about resources, products and processes.

Summarizing the implemented test cases the significant improvements of the system due
to the introduction of agent technology could be notified. Nevertheless, the deficit of real
industrial involvements as well as applications with real-life scenarios is more than evident. The
presented lacks of multi-agent approaches and missing standardization have been seen as main
reasons for the weak deployment grade in the industrial community. On the other hand, these

CHAPTER 2. STATE OF THE ART

28

shortcomings could be beaten on their own through a massive application of this technology. In
order to make agent-based systems more reliable and more attractive we notified several major
challenges in section 2.2.4. In this thesis, we aim to face these challenges by combining
advantages of multi-agent and semantic web technologies and test these on “real life” scenarios.
The importance of such a symbiosis is especially seen through the way of how the information
could be treated and managed in the distributed environment and how the knowledge could be
used to improve the functionality and effectiveness of a distributed system. Having a multi-agent
architecture that requires agents able to plan their action as well as to react in real time, we are
applying a hybrid agent architecture that implies the usage of ontologies for representating the
agent’s explicit knowledge and world model as well as the usage of the implicit knowledge
embedded in the low-level control for actions that require reactions in real time. Since our agent
uses behaviors that respond only on the world model state described with facts that could not
have uncertain nature, the term knowledge used further within this thesis will be related only to
explicit knowledge.

2.3 Planning and Scheduling

The production planning and scheduling issues are of essential importance for the
manufacturing domain today, especially due to the dynamic and competitive nature of the
nowadays global market that needs enterprises to be adaptive, flexible, robust and collaborative.
In order to achieve this, the introduction of completely new approaches for problem solutions as
well as more effective and efficient decision-making techniques is required. In this subchapter we
will give an overview of the related work and suggest some directions for improvements in these
fields.

2.3.1 Planning

Process planning (PP) plays a very important role in the product life cycle by linking the
product design with the manufacturing phase. Process planning resolves between what and how
will be produced. As a main goal of the process planning could be identified the full automation
of the planning phase, so that the plan generation related to decisions, which tasks and in which
order are going to be done as well as the corresponding operation and tool selection, occur
without any external human intervention. The process planning phase has to consider the product
requirements (price, quantity, geometry, tolerance, material, etc.) as well as production
constraints (machine capacity, tool characteristics, etc.). The usage of computer technologies in
process planning – Computer-Aided Process Planning (CAPP) – has made a significant step
forward in the direction of full integration and automation of the design, planning and

CHAPTER 2. STATE OF THE ART

29

manufacturing phases in the computer-integrated manufacturing (CIM) environment. CAPP is
commonly classified in two categories: the variant approach and the generative approach. The
variant approach spreads all existing plans considering specific characteristics into related
categories. In the case of a new product or quantity request, the most suitable PP will be selected
and appropriately modified. It is a relatively simple and fast technique but principally done
manually and dependending on the knowledge and experience of the workers. The generative
approach applies knowledge-based systems and is usually combined with artificial intelligence
(AI) techniques to generate the optimal process plan according to the part’s features and
manufacturing requirements. This planning process does not necessarily depend upon any other
existing plan and is usual created automatically. The following steps in generative CAPP could
be specified: product decomposition, part/feature recognition, interpretation of part design data,
operation specification, machine selection, tool selection, determination of processing parameters
fixture, setup identification and operation sequencing. Due to its nature to generate the “optimal”
plans considering current system conditions the generative process planning system meets most
of the needs of large companies which are dealing with a number of different products, each in
small production sizes. However, in usage are mostly CAPP systems that apply either variant
systems or semi-generative systems, since a truly generative process planning system that meets
industrial needs and provides a reliable generic structure, knowledge representation model and
reasoning mechanism is difficult to develop [Zha07]. Various CAPP approaches such as the
object-oriented, genetic algorithm (GA) GA-based, Petri net-based, fuzzy logic, neural-network-
based, feature-driven or knowledge-based approach have been reported in the literature and
applied for solution of different problems in the process planning domain [She06]. The main
shortcomings of those AI approaches are: knowledge acquisition difficulties, lengthy
development time, slow and expensive in execution speed, and no existence of a general-purpose
intelligence [Ber99]. Moreover, most CAPP systems applied today have a centralized and
hierarchical architecture as well as off-line data processing that build all together a very inflexible
structure and causes that plan regeneration takes a significant amount of time [Zha07]. Due to the
lack of intelligent capabilities, such system have difficulties to automatically adapt plans
according to the availability of resources, or share knowledge among the various planning related
functional modules [Utp99]. Additionally, a low frequency of planning runs and difficulties in
coping with new organizational forms of manufacturing such as product oriented or customer
driven production, require new skills and new approaches capable to handle the shortcomings
mentioned above [Aze00].

CHAPTER 2. STATE OF THE ART

30

2.3.2 Application of Agents in Process Planning

As a possible way to overcome the shortcomings of the decentralized architecture that
spreads the planning process between several entities/agents, each capable to create, control, and
observe the execution of its own plans, is suggested. The agents cooperate and coordinate their
actions in order to effectively accomplish their plans as well as to reach the commons system
goals. Such organization brings time improvements, since the complex problems are partitioned
between the entities by giving each entity a part of the problem to solve instead of dispatching the
whole problem to the central unit, what could cause difficulties especially when the data is
voluminous and changes frequently. The distributed agent-based approach allows proactive data
processing at the place of its origin and data exchanges are only those necessary for effective
system functioning [Hod05]. Moreover, large and complex problem structures become more
simple and the possible failures easier to track [Sei03]. We present some of the successfully
implemented agent-based process-planning systems.

An agent-based cooperative process planning system (CoCAPP) that integrates CAPP
with CAD and CAM and demonstrates five major requirements – autonomy, flexibility,
interoperability, modularity and scalability – is presented by Zhao et al [Zha00]. Six planning
agents (P-agents) related to specific tasks in the planning process (such as: feature recognition,
operation selection, machine selection, tool selection, etc.) are implemented. These agents are
monitored by the B-agent that supplies the global state information of the problem and monitors
the operational dependencies among the individual P-agents. The D-agent transmits the product
design data from the CAD system. Another example of the applicability of multi-agent concepts
for planning manufacturing processes is demonstrated at the Skoda Auto Engine Plant for
planning their mass-production of car engines [Pec07]. The solution is based on the ExPlanTech
multi-agent architecture [Pec02], which consists of a planning agent focused on the product
configuration and creation of production plans for individual orders; managing agents in charge
of detailed resource allocation and scheduling as well as conflict resolving and plan
reconfiguration; and resource agents that are either the representation of factory hardware and
software systems or that simulate a specific machine, workshop, or department. An approach to
intelligent process automation, where a higher-level agent-based automation layer operates as a
distributed planning and plan execution system that creates and runs reconfiguration sequences, is
reported by Seilonen et al. [Sei03]. The agents form a hierarchy based on authority relations. Any
of the agents that are representing physical or functional sub-processes can start the planning
process. During the distributed and cooperative planning process each agent creates locally its
own part of the overall plan and adapts it to the other agents’ plans as well. The National Institute
of Standards has developed an agent-based platform that supports the integration of predictive
models, process planning, and shop floor machining activities [Fen04]. The agent platform

CHAPTER 2. STATE OF THE ART

31

includes a design agent, a group of process planning agents, the capability repository agent, and
the manufacturing control agent. The agents have access to a knowledge base, a manufacturing
resource database, a numerical control programming system, a mathematical equation solving
system, and a computer-aided design system. The presented multi-agent system has demonstrated
an approach for system interoperability and the optimization of process performances. The
conducted and extensive literature reviews related to agent-based collaborative process planning
were done by Zhang et al. [Zha07].

2.3.3 Planning and Scheduling in the Assembly Domain

Constraints set during the product design phase influence the definition of the process
planning phase as well as the entire system design in a great manner. On the one hand, in order to
automate the process planning generation, the product model representation has to be made in a
way that enables understanding the designer’s intention, offer information about specific features
(connections, definitions, constraints, etc.) that could be used for the selection of appropriate
equipment as well as tool set-up definitions. At the same time, knowledge about the capabilities
of the equipment could facilitate the product design and ensure its manufacturability. The ability
to present the product model in a same way as production process and production equipment can
support easier mapping between these three key manufacturing elements and enable easier
optimization of both planning and execution process.

Assembly is much more than a process where two or more parts are connected, since the
whole process is accompanied with preceding as well as following actions (supply,
transportation, inspection, handling, delivery, etc.). All these actions are linked and there is a high
amount of information that has to be exchanged between the actors in order to have them
accomplished. “Assembly model” or models must be capable of capturing a diverse set of
information needed to describe the entities and activities associated with assemblies and
assembling so that designers of products, assembly systems, logistic systems, supplier relations,
field support, and finally disassembly and recycling, can have access to the information they need
[Whi96]. However, the lack of ways to standardize and describe assembly domain knowledge is
an obstacle to achieve an easy flow of information. This is the reason why we select the assembly
domain and its automation as test case for our knowledge-based multi-agent concept.

Vos elaborated major issues related to the relevance of assembly and assembly
automation to the industry. He also notifies the importance of methods that support the
configuration of assembly systems according to a product range and the production parameters
[Vos01]. We modified his graph (Figure 2.4) that shows the link between product design,
assembly processes and assembly equipment by considering also the influence of a customer

CHAPTER 2. STATE OF THE ART

32

order on the assembly process and recently more and more on the product design (customized
order) .

Figure 2.4: Link between product design, assembly processes and assembly
equipment [Vos01]

The product order, labeled with the product type (though this is related to the product design),
deadline and quantity, sets the key borders to the production planning process impacting directly
the resource exploitation. This is the main reason why the product order parameters should be
“understandable” and presented in the whole production chain, from the order over production
until the final delivery.

On the other hand, also the large amount of relevant data emerging from the product
development process (material, shape, structure, etc.) has to be coordinated and integrated in the
manufacturing process and through the whole enterprise. This especially, while in order to reach
a sustained product development, which is seen as essential step to achieve competitive
advantage nowadays, manufacturing systems are required to manage the product throughout its
entire lifetime ranging from design, manufacture, operation and destruction by establishing a
collaboration between partners from a wide spectrum of domains, resulting in various product
data types and formats, as well as different software tools [Mos05]. However, traditionally the
product model is geometric based and provides incomplete product definitions because besides
the assembly geometry, the understanding of its physical effects as well as the design intentions
(e.g. joint type) is required. The meaningful representation of product data is necessary to enable
semantic interoperability across different application domains [Pat05]. Ontology technology sets
clear relations among assembly components and forms features by systemizing assembly
knowledge in product, feature, manufacturing, and spatial relationship classes and linking data in
a way that enables automatic reasoning as well as their wide integration. Kim et al. presented the
ontology-based assembly model that serves as a formal, explicit specification of assembly design
making assembly knowledge both machine-interpretable and shareable at the same time [Kim06].
They classified assembly knowledge into a hierarchy of assembly/joining concepts, defining
concepts embedded in assembly design using specific terms and creating a standard vocabulary to
describe assemblies (e.g. Assembly, Part, Sub-assembly, Assembly Feature, Form Feature, Joint,

Product Order Ass. Process

Product Design Equipment

constrains

prescribes

prescribes

constrainspre
sc

rib
es

co
ns

tra
ins

CHAPTER 2. STATE OF THE ART

33

Joint Feature, Mating Feature, etc.). The ability of the presented ontology to capture both
assembly and joining intents was demonstrated with a realistic mechanical assembly. On the
other side, in order to link products, assembly processes and assembly equipment, Lohse et al.
proposed an assembly process ontology [Loh05], which could be seen as an extension of the PSL
ontology presented before. In contrast to Kim, whose ontology concept covers product design
and development side, this ontology provides definitions of concepts which are relevant for the
specification of an assembly process including a detailed product and process model. The
structure of an assembly process is separated into three levels: tasks that define the sequence in
which the components are assembled to form the final product: operations that define the steps
required to put the components together; and actions that define the individual motions and other
hardware and control related activities. The product is defined within this concept as a hierarchy
of assemblies, components and parts linked together by liaisons whose types specify the choice
of appropriate assembly operations. Both ontologies, although built with other intentions, have
some mutual classes (e.g. Assembly, Part, Joint/Liaison, etc.) that could be used as merging
points for the integration of these two concepts covering a broad range of product related
applications. There are also some other approaches related to assembly modeling and process
planning proposed in the literature [Zha03].

“The use of ontologies and explicit semantics enable performing logical reasoning to infer
sufficient knowledge on the classification of processes that machines offer, and on how to execute
and compose those processes” [Las06], what makes them proper for the fusion with agent
technology and to be used in the planning process. In order to reach the goal of modern assembly
planning systems to create activity sequences that are not only feasible but also optimized
according to one or more parameters, such as makespan, machine or tool utilization, the agents
that are supervising a particular resource or process planning system can use the accurate
information stored in the ontology to reason about available resources and utilize appropriate
optimization heuristics [Las06]. To our knowledge there is very few research in the area of agile
agent-based assembly systems. A framework for an agile assembly system has been proposed in
[Hol95]. The ongoing work on knowledge-based automatic reconfiguration system for robotized
work-cells, where the problem of reconfiguration is seen as a (re)planning problem and
knowledge representation is built around the concept of ontologies, was presented by Malec et al.
[Mal07]. The development of an ontology-based reconfiguration agent that uses ontological
knowledge of the manufacturing environment for the purpose of reconfiguration without human
intervention is reported by Al-Safi and Vyatkin. The created ontological knowledge model of the
manufacturing environment is based on the MASON ontology and used by the configuration
agent to infer facts about the environment [AlS07].

The application of agent technology does not bring any advantages if the used agents are
not intelligent. Considering ontologies as an intelligent way to manage knowledge, the

CHAPTER 2. STATE OF THE ART

34

integration of both technologies brings advantages such as extensibility and communication,
enabling agents to agree on the meaning of common concepts they use with any other agent in an
open environment [Gon06]. The application of both technologies on the concept that covers the
entire life cycle of a product is required.

2.3.4 Production Scheduling

The scheduling of production resources is one of the key features in the current

competitive and dynamic manufacturing environment. The scheduling has to be flexible and able
to cope with conflicts derived from the resources shared among the production orders. The
scheduling determines the most suitable time slot to produce something. The scheduling strategy
that can support a fast reaction to market changes and can cope with a turbulent environment is
considered as a one of the key issues in such systems. The task of scheduling is the allocation of
jobs and activities to available resources over time considering relevant constraints and
requirements [Raj06]. Its main objectives are the minimization of the production time of jobs,
production costs, increased resource utilization, etc. Substantial research efforts have been
devoted to developing mechanisms capable to dynamically allocate the resources required to
support the production activities needed for fulfilling the order [Won06, Pin02]. However, most
of the developed scheduling systems are based on centralized structures, which make
manufacturing systems scheduling even more complicated. Due to the hierarchical and
centralized structure, their modification is a very expensive and time consuming process. This is
especially obvious in the cases when certain resources become unavailable or additional
resources are introduced to the system, since their rigid structure hinders flexible redesign of the
system. In most real-world environments, scheduling is an ongoing reactive process where the
presence of real-time information continually forces reconsideration and revision of pre-
established schedules [Oue07]. The centralized structures, based mostly on big and complex
databases modeled at one (central) location, often suffer from data consistency problems and are
not always capable to carry out this dynamic rescheduling. This especially, in the cases when the
system has to manage data and knowledge which is spread between different locations, since the
different coordination and communication mechanisms are required in order to keep the system
synchronized. Highly dynamic and complex systems, such as manufacturing systems are hard to
manage with such structures. In the past several different analytical and heuristic methods
(including GAs, fuzzy logics, neural networks, Tabu search, etc.) were applied in order to cope
with scheduling problems and their optimization. However, being essentially centralized and
based on simplified theoretical models, such methods have shown difficulties when applied to
real-world situations [She06].

CHAPTER 2. STATE OF THE ART

35

The application of decentralized control architectures is considered as a promising
approach to overcome the issues mentioned above. Multi-agent systems, which are based on this
approach, are handling the complex problems by breaking them down into a number of simpler
problems, which are distributed between agents that then join their efforts in order to produce a
solution for the global problem. Agents cooperate and communicate together in order to achieve
aims, which are beyond the individual capabilities and knowledge possessed by each agent.
Nevertheless, being able to utilize parallel computation and to apply different methods for
solving their simple local problems, the application of agent technology can significantly
improve the efficiency and performance of the entire system. The agent concept is characterized
by the application of a bidding mechanism that in contrary to time-based mechanisms introduces
the economic-based evaluation or combination of these two principles [Ush03]. The Contract Net
Protocol (CNP) is the mostly used bidding mechanism proposed by Smith [Smi80]. The agent
that needs some service broadcasts its tender to other agents and waits for their bids. After a
particular time, all received bids are evaluated and the best provider awarded. In order to enable
negotiation among the agents to form different types of coalitions, an extension of the CNP based
on an market-oriented approach is proposed [Wel95]. The CNP is combined with dispatching
rules to solve job-shop dynamic scheduling problems [Yin07]. A further advantage of the agent
based scheduling is its capability to handle dynamic system changes (e.g. machine breakdowns,
rush orders, etc) [Boc04]. Being applied in a distributed environment, agents need only to
“freeze” the part of their schedule and recalculate tasks that are related to the broken resource
bringing the system due to their separated actions into a new evolved state.

Two main multi-agent architectures for dynamic scheduling are reported in the literature:
autonomous architectures and mediator architectures [Oue07]. The autonomous architectures are
usually based on negotiation between heterogeneous units. Parunak et al. presented the AARIA
agent architecture, where completely autonomous agents supervise physical components
(machines, tools, transportation resources, etc.) [Par01]. Saad et al. adopted a multi-agent
cooperative problem solving paradigm and presented heterarchical scheduling approach using a
bidding mechanism based on the CNP to generate the production plan and schedule [Saa97].
Various autonomous architectures for dynamic scheduling in flexible manufacturing systems
were also reported in [Kro99, Gol98, Oue98]. The main advantages of the autonomous
architectures are reduced complexity, integrity, cost efficiency, high flexibility, and a high
robustness against disturbances. The lack of predictability and global perspective are major
drawbacks of this architecture. This kind of architecture is also characterized with an increased
amount of communication, since the agents have to exchange more messages in order to have an
accurate environment representation. Shen and Norrie proposed the mediator architecture
consisting of various physical agents, which use the services of a mediator agent to coordinate
their activities [She98]. There are also few other approaches described in [Bon97, Sun01,

CHAPTER 2. STATE OF THE ART

36

Won06]. The advantage of scheduling through mediation is that the mediator possesses sufficient
knowledge about its coordinated agents and can coordinate their activities ensuring therefore
global consistency. The main drawback of this architecture is its “centralized” structure with
mediator agent as its bottleneck, whose failure can cause a failure of the whole system.

Extensive surveys of dynamic scheduling in the manufacturing environment considering
also agent-based systems were done by Babiceanu and Chen [Bab06] as well as by Ouelhadj and
Petrovic [Oue07].

2.3.5 Integration of Process Planning and Scheduling

Process planning and scheduling are highly related, because when the planning ends the
scheduling phase starts. However, being mostly done offline the process plan generation often
does not consider the current status of the shop floor. There are a number of factors that could
initiate uncertainties in the production system such as the existence of complex and reentrant
products, unreliable machines and stochastic yields, where small disturbances lead to a disruption
of the manufacturing process, often causing order disruptions and consequently changes in the
plans and delivery problems [Aze00]. The process plan restrictions and shop floor constraints
have to be considered in the scheduling phase that could become a very complicated and time
consuming process, if applied in a dynamic environment. In order to make more realistic and
applicable plans, the integration of the planning and scheduling phase is necessary. Nevertheless,
the traditional approaches execute these processes separately, mostly ignoring the condition of
resources on the shop floor (e.g. machine workloads, etc). That leads to the under- or over-
utilization of certain resources or even that some of the process plans perhaps cannot be executed
requiring alterations or replanning [Kum06]. A lot of work has been done in the past to optimize
and integrate process planning and scheduling in the area of manufacturing and the resulting
approaches can be classified into the following categories: centralized optimization algorithms,
close loop optimization, distributed process-planning approaches and agent-based approaches
[She06]. In the agent-based approach, all related actions are done by agents that are capable to
communicate, negotiate and accomplish specific tasks. An integration system that consists of a
manager agent, a process sequence agent, a machine grouping agent, a scheduling agent, an
optimization agent, a number of product agents and various resource agents is presented by Lim
and Zhang [Lim04]. Agents are classified into two categories: execution agents and information
agents: and each agent has two types of objectives: global objectives (e.g. to integrate dynamic
process planning and scheduling, to dynamically optimize the utilization of manufacturing
resources, etc.) and local objectives (e.g. bid and win the jobs announced by the machine
grouping agent…). Wong et al. presented an approach where the selection of the schedule and
allocation of manufacturing resources is achieved through negotiation among the part and

CHAPTER 2. STATE OF THE ART

37

machine agents by using hybrid CNP (negotiation on a fictitious cost with the adoption of a
currency function) [Won06]. Two MAS architecture, a simple one consisting of part and machine
agents and a hybrid-based architecture that involves in addition a supervisor agent, were tested
demonstrating the ability of the hybrid approach to provide solutions with a better global
performance. Tehrani et al. presented a multi-agent architecture of an integrated and dynamic
system for process planning and scheduling for multi jobs. The alternative manufacturing
processes are presented by the process plan networks and their heuristic search algorithms are
combined with the negotiation protocols, in order to generate suitable process plans and
schedules in the dynamic manufacturing environment [Teh08]. A comprehensive state-of-the-art
review in the area of manufacturing process planning and scheduling integration was done by
Shen et al. [She06].

However, one of the main shortcomings of the architectures mentioned above is the lack
of interoperability, since the applied methodologies separate planning activities (e.g. process
planning) from executing activities (e.g. production control and scheduling), creating a gap
between the involved systems. The problem in current distributed systems is that they are still
tightly coupled from the point of view of automated gathering and integration of data,
information and knowledge, being programmed with the focus on performing particular tasks
rather than on interoperability and openness [Obit08]. Shen et al. defined the integration of
process planning, manufacturing scheduling, and control as one challenging research topic where
much more attention has to be set on the complexity analysis and formal modeling of such
integration [She06]. The assimilation of different knowledge sources is considered as an
important problem that has to be solved being marked as not easy task due to different
representations, foundations, and levels of abstraction of various knowledge sources [Bos99].
Being mostly applied in heterogeneous environment, agent has to understand its as well as the
knowledge of related agents in order to reason about it, prior to making decisions. Moreover,
considering that future distributed manufacturing systems will need to handle a great diversity of
autonomous agents and mechatronic devices interacting intensively, there is as strong need that
all components understand the exchanged information and know how to communicate [Chr07].
According to Finin et al. for software agents to interact and interoperate effectively three
fundamental and distinct components: (i) a common language; (ii) a common understanding of
the exchanged knowledge; and (iii) the ability to exchange whatever is included in the previous
two; are required [Fin97]. The usage of machine-interpretable semantics (ontologies) to describe
the components of manufacturing systems enables other intelligent components (agents) to
perform reasoning and infer sufficient knowledge to interact as well as to overcome current
interoperability barriers [Las06].

CHAPTER 2. STATE OF THE ART

38

This is the reason why we used the semantic technology in this thesis to solve the
interoperability problem in the multi-agent domain, solving directly and indirectly the
interoperability problem in all the domains (including control, planning and scheduling) which
are managed by agents.

CHAPTER 3. THE KASA ENVIRONMENT

39

3. The KASA Environment

“Beauty is in the eye of the beholder, and
 information is in the head of the receiver.”

Dretske

3.1 Introduction

An agent is an intelligent entity placed in particular environment in order to supervise

or execute specific actions. It is able to perceive the environment through sensors and act on it
with effectors. Based on its responsibilities and observations, an agent has to constantly make
decisions that again could influence the environment as well as its state. An agent has to be
aware of the results of its actions in order to be able to perform subsequent activities or repeat
the whole process over again (Figure 3.1). Nevertheless, while its actions could have
beneficial as well as negative effects to the agent’s existence, the fundamental question here
is: how should such an agent decide what to do? As possible answer, here should be
considered facts and states required to start particular actions. The real and accurate
information about the environment could be considered as key precondition, needed by the
agent in order to make proper actions efficiently and effectively. Consequently, for an agent it
is of crucial importance to “understand” received information from its surroundings and
related to its meaning select correlated behavior that will influence environment over
effectors.

Figure 3.1: Correlation of the agent and its environment
This indicates the importance for an agent to mirror and transform its environment into an
understandable mental representation. This representation is called world model and can be
defined as the agent’s internal representation of the external world or its domain of
application. The representation is, within this context, defined as relationship between two
domains where the first is meant to “stand for” or take place of the second, being more

Environment

Observation

Reasoning

Action

Happy ?
Yes

CHAPTER 3. THE KASA ENVIRONMENT

40

concrete, immediate or accessible in some way than the second [Bra 04]. Such a world model
represents objects, activities, and states embodying the agent’s knowledge about its
surroundings. As said in the previous chapter, we will use an ontology to formalize the
agent’s knowledge. Consistent semantics assure the accuracy of each agent’s world model
with respect to the real world. Providing an ontology of its surrounding the agent is equipped
with an up-to-date representation of its environment built from sensor data and
communication with other agents. From the viewpoint of inter-agent interactions, the
explicitly defined and commonly accepted ontology is an indispensable tool for ensuring
interoperability between agents in the sense of providing the agents with common
understanding of the knowledge exchanged during inter-agent communication. An ontology
can also capture actions and events in a uniform and processable way so that they can be
recorded in time and further analyzed. However, being used for diverse tasks agents have
different structures of their world models. This depends mostly on their application domains
but is also strongly influenced by the agent decomposition approach (physical or functional).
Consequently, depending on their application domain, agents will have different capabilities
and responsibilities. To define an agent, certain facts need to be specified about the agent:
domain of application, tasks, environment, perception abilities (i.e. ways to update its world
model: sensors, communication…), as well as agent behaviors in particular situations.

A system is defined as “objects and events connected and controlled in time and space
in order to obtain intended functions” [Hol06]. Considering a multi-agent system as a set of
related entities integrated in a complex society, where each entity has to follow particular
norms and use specified mechanisms to interact with each other pursuing its own goals, there
are particular system characteristics (e.g. stability, security …) that have to be respected in
order to achieve a common system goal. Moreover, the agent technology embodies a large set
of decisions and interaction capabilities, which are able to create a vide variety of system
behaviors and when not designed carefully could lead to unintended behaviors or to the
achievement of intended behaviors in an inefficient way [Bus04]. This all indicates that
particular system states which are related to the global aims have to be integrated and
considered when designing the agent’s world model. A manufacturing system, which is made
of subsystems that could be also complex systems themselves, being mostly influenced by
extremely turbulent conditions and characterized with a high number of system states, is a
typical example of a complex environment. The introduced multi-agent framework, used to
manage particular parts of this environment, should be able to handle the complex dynamics
of the manufacturing environment allowing its members to coexist and perform activities that
should bring this system into an optimal state related to its current conditions. Having a multi-
agent architecture which is applied in the manufacturing environment to the assembly domain,
we will analyze the manufacturing environment and address its relation to the assembly
process in the next section. We will define agent types needed for its proper functioning,
addressing also responsibilities and activities of each agent type. At the end of the chapter the
developed agent architecture will be explained in detail. It is important to mention that the

CHAPTER 3. THE KASA ENVIRONMENT

41

developed multi-agent architecture needs to satisfy requirements of the assembly domain, but
should be applicable to most of the manufacturing environments.

3.2 A Manufacturing System

A manufacturing system is defined as “a collection or arrangement of operations and

processes used to make a desired product(s) or component(s)” [Bla91]. It consists of
interrelated elements (people, equipment, sub-systems, etc.) introduced to cooperatively
achieve the overall objective defined as transformation of raw material into commercial
products. Manufacturing systems could be categorized according to the type of production
process to: discrete manufacturing that is concerned with the production of solid products and
the process manufacturing that is related to the production of shapeless materials. Further,
discrete manufacturing systems can be classified based on their production quantity to:

- mass production, which is used for producing or processing of extremely large
volumes products without interruption and characterized by a production that runs
permanently being executed by a series of machines that receive materials through a
closed transfer system,

- batch production is meant for the production of medium size quantities of one type
products or parts (shoes, books, inks, furniture, etc) having products produced in
regular intervals, but with a production rate that is usually higher than the demand rate
(in order to produce the next batch the equipment mostly must be stopped and re-
configured causing inefficient loss of production time known as 'down time'),

- job-shop production that is characterized with small or very often size-one product
volumes, being mostly adjusted to specific customer requirements and able to produce
a wide range of products.

Within the production process one can also distinguish operations which are adding value to
the product such as:

- processing where the properties of material are changed, and
- assembly where several product parts are combined into one.

There are also operations that add no value to the product but have to be performed in order to
set preconditions for other operations (handling, fixing, etc.) or to test results of particular
operations (inspection) [Bus04]. The processing and assembly operations are often interlaced
during the production process and looped until the final product is being reached (Figure 3.2).
Nevertheless, manufacturing systems are not only related to the production process but also
include and manage subsystems that influence the production such as ordering, supply,
shipment, etc (Figure 3.2). In addition, we noticed the importance of control, planning and
scheduling subsystems in the previous chapter. Each of the subsystems mentioned above has
to be supervised and its data, states and parameters considered, with much of this information
needed not only in their original subsystem, but also in the other subsystems, such as e.g.
quantity information is required through the whole production chain.

CHAPTER 3. THE KASA ENVIRONMENT

42

Figure 3.2: The manufacturing system
This becomes more complicated when the number of products, services, subsystems, and
cooperation partners increase. Adding to this, requirements on manufacturing system to react
quickly and competitive to customer request, to maximize resources utilization, to rapidly
absorb system failures or to rash adapt their configuration on new products, etc. one can see
how complex this system is and how a disturbance or an unexpected change in one part of it
can affect any other part or even the whole system. A better coordination between subsystems
would reduce the uncertainties and ensure making proper decisions. This points out the vital
importance of an uninterrupted information flow between the manufacturing subsystems as
well as their easy integration and their ability to “understand” this information, since this can
improve the manufacturing system agility and its real time responsiveness. The KASA is
designed to support the job-shop production covering initially the assembly processes but
being able to support processing as well. The architecture is focused on a clear
decentralization of the manufacturing system intending to reduce its complexity and increase
agility.

3.3 Layered Manufacturing System Architecture

In order to reduce its complexity, the control of a manufacturing system can be spread

in several “hierarchically” ordered layers. The layered system structure enables its functional
decomposition into subsystems, which can then be easily further decomposed but also
integrated and managed in bigger systems as well. Moreover, the entities within particular
layer can work independently to a certain point and their failures do not necessarily have to

Manufacturing system

Orders
AssemblyProcessing

 Raw
Material

Product

Shipment

Production

CHAPTER 3. THE KASA ENVIRONMENT

43

affect the other neighboring entities or the whole system. During the layered structure
specification, besides the fact that particular subsystems logically symbolize some layers
(planning - planning control layer), we considered that particular decisions have to be made in
a real time requiring observation of a limited environment in contrast to decisions that require
a global view without a special time limitation. The introduction of layers limits their
responsibility and planning perspective, improving system performances and simplifying the
concept.

We specified four layers: management, planning, scheduling and executive layer
(Figure 3.3). Their functions and responsibilities are listed as follows:

Figure 3.3: The layered system structure
- The Management Layer is responsible for entire system stability and functionality. It

supports production and resource initialization as well as their determination. It is also
concerned with the communication with the external environment and provides
solutions for complex problems related to the global environment. It accepts orders on
a routine basis.

- The Planning Layer links process planning with product design. It is basically
concerned with the sequencing of process steps, identification of product types and
quantities to be produced. It defines equipment and resources that could be used and
ensures that the parts or components required for the production are available and the
final product delivery dates not exceeded. The shop floor layout is also defined on this
layer.

Management
Layer

Planning
Layer

Scheduling
Layer

Executive
Layer

Functional
D

ecom
position

P
hysical

D
ecom

position

Information
Flow

Product 1

Product 2

Product 3

Resource 1 Resource 2 Resource 3

Order 1 Order 2 Order 3
Task A - Res 1
Task B - Res 3

Task N - Res 3

Task A - Res 2
Task B - Res 1

Task C -
Task D -

Task A - Res n

SYSTEM

CHAPTER 3. THE KASA ENVIRONMENT

44

- The Scheduling Layer is concerned with the synchronization of production needs with
available resource capacities. The goal is to reach the internal deadlines that are set on
the planning level. This layer is responsible for negotiating with the resources, the
tasks as well as parts, tools, and product allocation between resources.

- The Execution Layer is related to the physical job shop equipment. On this layer, the
production tasks are executed considering the resources’ constraints and abilities, their
performances measured and if a failure or disruption is diagnosed, the scheduling as
well as management layer is informed. Also specific activities related to the execution
of particular actions (i.e. pallet routing, removing, fixing, etc.) are coordinated on this
layer.

Such layer structures enable that related layers can communicate avoiding the unnecessary
“stage by stage” procedures. The presented structure assures clear definitions of each layer
role in the system as well as associated tasks that have to be done in order to achieve common
goals. This further enables the smooth creation of related agent classes and mapping of
ultimate system goals to these agents. Moreover, in order to enable easier decomposition and
structuring of manufacturing goals and their linkage to related agents classes, we split one
customer order in four layers. An order is composed of related product orders, which further
consist of several work orders where each work order require execution of connected tasks for
its accomplishment (Figure 3.4).

Tran
sp

ort Transport

Fitting

Figure 3.4: Order decomposition

In this context, order represents a set of products ordered by a customer, which specifies due
date as well. Product order is defined by the type of the product, its quantity, design e.g.
color, etc. Work order integrates all tasks that have to be done to make one subassembly for a
particular product. Each operation done within one particular product order is called task (e.g.
transport of a first part from storage, transport of a second part from storage, as well as the
welding of these two parts are three tasks to be done to make one subassembly). The
managing of each decomposed order layer is coordinated between particular agent classes. In
the next section, we will present the resulting multi-agent system.

3.4 The Multi-agent System

We developed a framework for agent systems based on the hybrid structure, in which

every agent can influence any other agent’s behavior when needed and where each agent

CHAPTER 3. THE KASA ENVIRONMENT

45

manages its own activities based on its local state or on the information (message) received
from other agents. As a result the system behavior is not only reflected by the skills of one
agent but also evolves from the collective behavior beyond individual agents. In the presented
architecture, the agent is an autonomous semantic entity having specific tasks and knowledge
about its domain of application, about strategies that can be used to achieve a specific goal,
and about (other) relevant agents involved in the system. Considering the manufacturing
domain as a complex system whose proper functions can be represented with a mixture of
physical and non-physical components as well as relations between them, we combined both
functional and physical decomposition approaches to create agents. The manufacturing
components are “agentified” to implement a behavior that represents the manufacturing
component objectives and functionalities, with each agent being responsible for carrying out
different specific functionalities. We used the functional decomposition approach to create
agents responsible for system support, process modeling and task scheduling (Figure 3.3),
applying this approach to each of the first three layers and generating particular agent types
for each layer.

The Contact Agent (CA) is related to the Management Layer and according to that it

has responsibilities that encompass organizational and supervisor functions. The CA is
created at the start-up of the system and it is always active. It is concerned with the system
stability and in the case that one part of the system collapses, this agent considers its influence
on the system performance and, if significant, undertakes particular steps in order to bring the
system back into the optimal state. Its further responsibilities are to receive a customer order
and create one Order and Supply agent for each related product order. This agent also creates
an agent for each new resource introduced in the system. After the order was accomplished or
particular resource removed from the system, the CA determinates the related agent.
However, having only one instance of this agent for the whole system and considering it as a
possible single point of failure, the replication technique [Mel05] and replication service
provided with used agent platform [Bel07] can be applied to enhance agent’s failure tolerance
level (more about the system failure tolerance in the Chapter 5).

The Order Agent (OA) captures the goals and tasks of the Planning Layer. The OA is

responsible for accomplishment of one product order, respecting due dates and the like; and
handling customer requests for modifying or cancelling their orders. The essential information
for an order agent is: type of product, the production deadline, quantity, and the priority of the
client. Having the knowledge about all products corresponding to a single order, this agent
combines the ontology-based model for a particular product together with other information,
sequences this into work orders and sends it to the supply agent. Based on this knowledge and
contacting the storage, the OA checks if all parts and materials required for execution of a
single order are available. During the production, this agent collects also information
concerning the status of current product orders or the system’s performance. The OA is

CHAPTER 3. THE KASA ENVIRONMENT

46

responsible for loading products into the system when a product order reached the system and
for unloading products from the system when all of their processes are finished.

The Supply agent (SA) maps the functions of the scheduling layer and has such name

since it “supplies” the job shop with tasks. The SA is in charge for coordinating the
production execution in order to achieve the best possible production results, including on-
time delivery, cost minimization, and so forth. It also manages the movement of related
product order’s subassemblies and materials across the job shop. After the OA decomposes
the product order into work orders, they are forwarded to the SA. Using the ontology and
taxonomic relations specified in the product definition (Figure 3.16), the SA extracts tasks
from work orders and schedules the ones that have to be completed at first. After that, the SA
initially sends requests for bids to all machine agents that have the capability to process the
first task. The interested machine agents respond with their bids. Each bid contains an
estimated queuing time and finishing time for the requested operation. After collecting the
bids, the SA evaluates the bids and selects the best one. When the related machine is
identified, the agent negotiates with transport agents to route the task there. Whenever a
current task is completed, this agent sends bid requests for the next operation. This bidding
procedure continues until all the requested features of a job are finished. When the last task in
the production process is finished, the agent sends the notification to the OA.

The physical decomposition was used to create the Machine Agents (MA), which are

related to the Executive Layer. MAs represent manufacturing resources (typically a machine)
providing particular processes und services. They play an important role in the system since
they are the “hard workers”, whose effective functionality ensures normal system
functionality. These agents have knowledge about their particular domain of application. The
provided services by the resource are registered in Directory Facilitator so that the SA can
easier find out suitable resources. The machine agent manages its local scheduling and
negotiates with the SA about supply about free timeslots in which the requested operations
can be performed. These agents collect the knowledge about all possible processes that can be
provided, materials to be used, a list of geometrical features as well as the feature
relationships, tools to be used to produce the feature and tolerance and surface quality
requirements. A storage agent control reserves of products, parts and materials on the shelves.
Machine agents update their knowledge permanently to ensure the existing record is kept up
to date.

3.4.1 Testbed

As a testing platform we use the “Test-bed for Distributed Holonic Control” at the

Institute for Automation and Control, Vienna University of Technology (Figure 3.5). The
Testbed architecture consists of an automatic storage system with a handling unit for the

CHAPTER 3. THE KASA ENVIRONMENT

47

extraction of the parts, a pallet transfer system with redundant paths, the industrial robot for
machining and assembly tasks as well as a portal robot for the final assembly. Robots and the
handling unit are considered as entities able to perform a certain operation.

Figure 3.5: Test-bed for Distributed Holonic Control
Corresponding MAs register their services in the DF (will be explained later) during start-up.
Each such production resource has an agenda, which is used to store the information about
unfinished assigned tasks. Based on available knowledge the MA decides when and how a
specific operation from the agenda will be performed. However, tools are also represented as
a component required in order to perform particular operations and related to that the setup
and the machining times as well as removing and handling times for each particular operation
are covered in the ontology. The total processing time for one task is calculated as follows:

Ttasktotal=Msetuptime+Tchangetime+(Pmachiningtime+Phandlingtime)* Q (3.1)
where Ttasktotal is the tasks’ total processing time;
Msetuptime is the machine setup time for a particular operation;
Tchangetime is the tool change time;
Pmachiningtime and Phandlingtime are part machining and handling times and Q is the batch size.
The total processing time for all assigned tasks Tagendatotal is:

∑
=

=
n

i
tasktotalagenda iTT

total
1

)2.3()(

CHAPTER 3. THE KASA ENVIRONMENT

48

where n is the number of tasks in the
agenda. The MA controls the machine
capacity and availability. The capacity
limits the number of tasks that a specific
resource can handle at a given time.
Since each resource has a restricted
capacity, the MA takes care that Tagendatotal
does not exceed the capacity. The MA has knowledge about each operation that could be
performed at a machine and after it receives the Call for Proposal (CFP) message from the
SA, the Tagendatotal, which also includes the time of the task from CFP, will be calculated and
sent back as the bid. In the case that full capacity is reached, MA will not answer to the Call
for Proposal (CFP) messages sent by the SA until its capacity become undermined or
exhausted. However, when the resource starts with the execution of a particular task, its status
will be set to busy and it will be not available for the next tasks until the previous one is
completed. The MAs are using dispatching rules for sequencing the tasks allocated to their
machines (the procedure will be explained in the next chapter). After the machine has finished
the current task, the MA loads the next task that has the highest priority (Figure 3.6), if there
is a confirmation from the Storage Agent (STA) that the parts required for that task are on the
way. In this case the machine will be kept busy so that it is ready to process the highest
priority job as soon as its parts arrive. Otherwise, the next task with lower priority but
available parts will be loaded.

Components of the pallet transfer system and related agent classes
The main components of the pallet transfer system and related MA classes are:

• The conveyor belt which delivers items from one place to another. It is controlled by
an agent that has to have knowledge about all conveyor characteristics (speed, length,
direction, etc.). This agent also takes care that the number of pallets on the conveyor
doesn’t exceed the optimal number.

• The index station (Figure 3.7) that fix the pallet in a defined position for the handling
units. Its agent is informed by the relating handling unit, which pallet to stop in a
particular moment as well as when to release it.

Figure 3.7: Index Station unit
• The identification unit (RFID) for the identification of passing pallet units. The agent

sends this information to the related intersection unit.

Figure 3.6: Priority based scheduling

CC1CC

INDEX STATIONPallet

RFID

CHAPTER 3. THE KASA ENVIRONMENT

49

• The intersection unit, used as a common term for the place where three conveyors
cross each other at the same level. Two different kinds of intersection could be
deferred:

o The Diverter (Figure 3.8) which receives items coming from the input
conveyor and according to their destinations routes them to one of the two
output conveyors. The related agent has to have an accurate system
representation in order to be able to route the pallet correctly.

Figure 3.8: Diverter unit
o The Junction (Figure 3.9) which receives items coming from the two input

conveyors and according to the priority of order decides which pallet should go
as first to the output conveyor.

Figure 3.9: Junction unit
The major transportation tasks are: to deliver a part from the storage, to carry an unfinished
subassembly between the machines, and to remove the finished product from the system. The
intersection units as well as the index station units additionally have sensors and stoppers for
the regulation of the pallet movements. The main agent classes of the pallet transfer system
are presented in Figure 3.10.

Figure 3.10: The main agent classes of the pallet transfer system

CC1

RFID

Pallet

DIVERTER

St
op

pe
r

C
C

2

CC3

Se
ns

or

CC3

JUNCTION

CC1

C
C

2

RFID

RFID
Pallet

Pallet

Sensor
Stopper

CHAPTER 3. THE KASA ENVIRONMENT

50

Figure 3.11: Introduction of a new Product Orders

Since agents in our architecture do not have a global overview, decisions can be short-
sighted. To avoid this and to facilitate the communication and coordination between the SA
and the MAs, we decided to adopt a service agent provided within the used JADE platform
[JAD08], the Directory Facilitator Agent (DF) [She99]. All resources contained in the
platform should have their services registered at the DF. In case that SA or MA need to
communicate or negotiate with other agents wherever in the system, these agents should
contact the DF to find (the addresses of) the related agents and after a positive answer
communicate directly with those agents. This approach significantly reduces the number of
messages in system, since messages are only sent to a limited number of agents instead of
being broadcasted to all agents.

3.4.2 Introduction of new Orders

Orders, placed by customers, are received by the contact agent. They contain
information about the type of ordered products, quantities, and sometimes delivery dates. The
CA splits these orders into product orders that are related to particular product type and for
each of them creates one responsible OA and SA, respectively. The OA is skilled to produce
the assembly plan for each product that can be produced by the factory plant and contains all
the knowledge to produce the product, namely the product structure and the logistic process
plan (Figure 3.11). The OA uses the ontology-based product model to extract the required
parts and material for the production and contacts the storage agent to check their availability.
If the remaining stock quantity is too short, it generates supplying order, forwards it to the CA
and waits until the reception of required material or parts is confirmed. In the case that enough
material or product parts are on
stock, the OA uses the knowledge
about the product, its parts as well as
relationships between them to
identify operations to be done on
these parts and to generate work
orders to be completed to finish this
product. It forwards generated work
orders to the SA with the request to
start the negotiation with machine
agents about supply. If the delivery
date is provided, the OA uses this
information to set the production
priority. The SA sequences the
related tasks from work orders,
selects the first task necessary for
work order finishing and specifies the related operation. In order to get list of available

CHAPTER 3. THE KASA ENVIRONMENT

51

resources for this operation, it sends the REQUEST message to the DF Agent with a
specification of the required services. Because the DF agent covers only its platform, in order
to be able to offer reliable information, this agent builds a network of DFs – the so called DF
Federation [Tha04, Mer08c]. It detects services offered on other platforms. After the DF
Agent sent the INFORM message to the SA about
available resources, this agent starts the CNP and
sends the CFP to all resources, respectively MAs, in
the list (Figure 3.12).
Each MA calculates its agenda (the work that is
already assigned to its machine) and sends the total
processing time for all assigned tasks (Tagendatotal)
with a PROPOSE message back. The processing
time of the task from CFP is also included in the
proposal since one machine can perform the same
task quicker than other machine (e.g. different
machining speed). The SA chooses the best
proposal (resource with the lowest workload) and sends the ACCEPT_PROPOSAL message
to the related MA with more precise specification of the operation. Since the destination of
the task is known now, the SA can start to supply the resource with required parts/material. In
the case that there are some parts to pick up, the first destination will be the storage. In order
to find the best suitable pallet for transportation, the SA has to contact all available pallet
agents (PA). The SA will again contact the DF Agent with the REQUEST message and
“Transport” as a service specification. All pallets which are currently performing transport
operations have their status set as busy and due to a specific implemented behavior are
immediately deregistered from the DF Agent service lists. This state will be changed as soon
as the pallets become free again. However, after the SA has received the list with available
pallets, it starts the CNP and contacts all PAs. Having always accurate information about the
pallet position, the PA calculates its distance to the destination and sends this as an answer
[Mer08]. The nearest pallet to the destination will be chosen and the storage informed about
its arrival. After it supplies the pallet with goods, the storage agent notifies the SA about
supply and the SA forwards the information about the approaching pallet to the related MA.
This information is very important because the operation with the highest priority will be
loaded only if the parts are already available or on their way. On the way to the destination,
the pallet will be routed based on shortest path algorithm as described in [Mer08]. When the
first task was finished, the SA starts the execution of all others using the same procedure. At
the end of the production order execution, the SA passes the relevant information to the order
agent. The OA forwards this information to the CA, which waits until all product orders
related to this customer order were accomplished to inform the customer about its shipment.

Figure 3.12: CFP Message

CHAPTER 3. THE KASA ENVIRONMENT

52

3.4.3 The Ontology

„Finding ways to reduce time and cost for getting high-quality and accurate

knowledge through advanced information systems is a hot issue in current distributed
information environments“[Qiu05]. The ontologies and embedded semantics can be used to
formalize the knowledge representation and to achieve overall „understanding“. Individual
agents, having their own objectives, knowledge and skills, may have different world models.
In order to ensure correct understanding of the exchanged information agents must have the
same presentation of the environment, or at least that part of the shared environment about
which they are exchanging information with each other. We are using the ontology to provide
semantic understanding among software agents. The ontology-based assembly model was
presented in [Kim06] and serves as a formal, explicit specification of the assembly design so
that it makes assembly knowledge both machine-interpretable and shareable at the same time.
We use the same concept (Figure 3.13) to link product designs, assembly planning processes

and required assembly equipment together. The ontology based product model is used to
extract the production/assembly operations from the product design and link particular tasks,
which have to be performed for the production/assembly of a product, to particular resources.
Each task consists of a series of actions that can be executed by one or more resources. These
resources as well as their control are represented in the ontology. The connection to the
product order is made through the type of ordered product, quantity, which defines the
number of parts that have to be available to start the assembly process, and due date that
defines the priority of the order.

Index -Station Intersection RFID ReaderStopper / Sensor

Pallet

R
obot

Pallet

R
ob

ot

Resources Process Plan

Product

Order

Type

Quantity

Due Date

Figure 3.13: Decomposition of assembly tasks and their link to resources

CHAPTER 3. THE KASA ENVIRONMENT

53

As a basis for our ontology we take the “Machine Shop Information Model” [McL05]
developed at the National Institute of Standards and Technology (NIST) as a part of efforts
that support the development of standard data interfaces. This information model is intended
to be used for representing and exchanging machine shop data, initially between
manufacturing execution, scheduling, and simulation systems. The “Machine Shop
Information Model” does not include any assembly specific concepts and constraints. Our
ontology is also heavily influenced by the OZONE ontology [Smi97], the Enterprise Ontology
[Usc98] and the ADACOR ontology [Lei04]. Our proposal is built on three basic layers:
product, activity and resources (Figure 3.14). There is some correlation between our ontology
and the FABMAS ontology [Mön05] as well as the MASON ontology [Lem06], which are
both also based on three layers.

Figure 3.14: Three Ontology layers

A product is presented as a hierarchy of subassemblies and parts together with all their
properties and relationship between them. Parts are defined as components, described by a set
of attributes, properties, constraints and relations to other parts. A subassembly is a non-
empty subset of parts that either has only one component or is such that every part has at least
one surface contact with another part in the subset [Rab93]. The relationship between parts
within a subassembly defines operations that have to be done to connect these parts and
represents how these subassemblies should be put together to complete the product. An
operation is defined as a discrete set of actions which leads to a certain change of state in or
on the part. In our framework, we distinguish two types of operations:
manufacturing/assembly and transportation operation.

An activity is the basic action, which specifies how the product state is changed. An
activity describes how the product is going to be produced and how its production relates to
all other entities in the production environment. Our concept describes the order activity as a

Product Order

Task

Work Order

Product

Subassembly/
Part

Operation

Resource

Agent

physical
Component

is

controlledBy

has

has

consistsOf

done by

work as

co
ntro

lle
dBy

for

for

requiresOperation

for

product activity resource

Order

has

controlledBy

CHAPTER 3. THE KASA ENVIRONMENT

54

bunch of product orders that split up further into sets of work orders, each work order being
described as a list of tasks. In order to simplify the operation generation of the process plan,
we adopt a top-down function model of the product [Zhu00]. Each product type is described
through its own process plan. A process and logistic plan in the assembly tree specify the
sequence of manufacturing or assembly operations which have to be performed in order to
make a product. Each operation could be performed by different resources and consequently
can be accompanied by related transport operations, making all together work orders (steps).
Assembly phases are presented as levels in the process plan, which means that parts from the
lower level will be assembled first (Figure 3.15).

Figure 3.15: Logistic plan in the assembly tree

There is also a hierarchy within the same level and between work orders, where is
distinguished which part/subassembly should be transported and assembled before others. We
assume that each assembly operation is performed by a different resource which means that
between two assembly operations it will be necessary to transport a part/subassembly to
another destination. In the case that two assembly operations were performed by the same
machine, one after another, the SA that manages the assembly will delete this transport
operation.

A resource is a physical component able to perform a certain action. However, since
this component embodies agent as its control part, we consider also the agent concept as
integral resource element.

The agent interaction with the ontology in the background ensures that when an agent
extracts relevant information from a message it understands the meaning of the terms in the
message and the way this terms are combined in the statement. The presented concept
distribution and ontological representation of a production process improves the way
components communicate and exchange information in the manufacturing environment. Our
ontology covers the environment structure, characteristics, states and components
interrelationships enabling the related agents to interpret their environment, reason about it
and make right decisions (Figure 3.16). Especially the structure of the activities layer, which
has to serve as a link between the product layer (what is going to be produced) and resource

CHAPTER 3. THE KASA ENVIRONMENT

55

layer (who is going to do this), fulfils its purpose by integrating the production planning and
scheduling as well. The ontology-based concept of the product production/assembly described
with Steps ensures the exact decomposition of the product orders to related work orders and
further associated tasks and their correct indexing. This is particularly supported with the
integrated planning relationships needsPredecessor (Step) and isFollowedBy (Step) that
enables the SA to reason when and why to start particular task allocations, which are know as
scheduling activities.

Figure 3.16: Assembly System Ontology
The important advantage of the introduced ontology-based approach is the

achievement of the preconditions for easy assembly and disassembly of the product. Our
knowledge-based system does not need to be told, how a problem has to be resolved (i.e.,
which and when particular tasks have to be done), but the concept and the goal is described
instead. The system decides on its own how to achieve the goal.

3.5 Agent architecture

Our architecture consists of agents which are acting based on their knowledge. Each

agent is an autonomous entity and has its domain of application. The agents have to observe

-handshakeAgent : ContactAgent
OrderAgent

Contact Agent

-registeredInDF : Boolean
Machine Agent

-quantity : Integer
-priority : Integer
-name : String
-status : Integer

Product Order

-name : String
-number : Integer
-level : Integer
-status : Integer

Work Order

-name : String
-destination: Resource
-number : Integer
-status : Integer

Task

-name : String
-ID : Integer
-busy : Boolean

Resource

-name : String
Product -name : String

SubAssembly

-dueDate : Date
-customer : Customer

Order

-name : String
-earliestLevel : Integer
-leatestLevel : Integer

Step
-name : String
-duration : Integer
-requresSetup...

Operation
-name : String
-material : String
-available : Boolean

Part

isUsedIn

-name : String
-address : String
-jadeAgent : Boolean

Agent

-handshakeAgent : OrderAgent
SupplyAgent

isFollowedBy

-address : String
-priority : Integer

Customer

-orders1

1

-receive

1

1..*

-creates1

1..*

-creates 1

1..*

-consistsOf1
1..*

-creates

1

1..*

-for1
1

-controls

1

1

-creates

1

1..*

-has1

1

-creates

1

1..*

-consistsOf

1 1..*

-controls1
1..*

-controls

1

1..*

-worksAs1

1..*

-executes

11..*

-perform
s

1

1..*

-requires

1 1..*

-needs1

1

1

0..*

1

0..*
needsPredecessor

1

1..*

-consistsOf

1 1..*

-defines 1

1

-consistsO
f

1

1..*

-isA
ssem

blyW
ith

1

1

CHAPTER 3. THE KASA ENVIRONMENT

56

their environment in order to possess its accurate representation (e.g. by sensors…). Having
only a partial view of their surroundings, the agents are forced to communicate and cooperate
with other agents in order to overcome the lack of a global perspective. Both ways, sensor and
messages, of the agent’s dealings with its surroundings have to be considered when designing
its architecture. Since the physical decomposition approach presents combination of
functional (agent part) and a resource part, it will be discussed in the rest of the chapter as
representative case.

Considering the strict
requirements of the manufacturing
environment for real time action, our
architecture splits the control of a
manufacturing resource to the low level
control (LLC) and high level control
(HLC) (Figure 3.17). These levels are
organized in a hierarchical way, where
the HLC is represented as an agent,
which uses the world model
representation to coordinate the actions
of a manufacturing resource and to
delegate specific tasks to the LLC
controlling indirectly its execution. On
the other hand, the LLC governs the
particular actions of the underlined
physical system by collecting and
processing the information from sensors. Based on the result, it performs some “reflex” action
or informs the HLC about an event.

3.5.1 The HLC Architecture

The HLC level, which is also known as the decision-making level or agent, is capable

to govern the interaction with the external world and to understand, depending on the
decomposition approach, different types of information that can be observed in the external
material world. Here the decisions are made when and how, but also which actions are going
to be performed at particular time. This level is able to reason about its own processes,
characteristics, capabilities and goals. Based on the success or failure in achieving these goals,
the decision about future steps will also be made on this level. The agent needs to have
knowledge about its domain of application, about strategies, which can be used to achieve a
specific goal, and sometimes knowledge about the (other) agents involved in the system. We
consider an agent as an entity that has a set of protocols, which govern the operations of the
manufacturing entity, a knowledge base, an inference mechanism and an explicit model of the

Figure 3.17: Control architecture of a component
(conveyor)

CHAPTER 3. THE KASA ENVIRONMENT

57

Figure 3.19: A simplified rule

problem to solve (Figure 3.18). The
knowledge base stores the domain-specific
knowledge. It is composed of an ontology
and a set of problem solving rules. The
crucial element in the decision component
is the rule-based system, which applies
declarative knowledge, expressed in a set
of rules, to regulate the agent’s behavior.
The knowledge base together with an
inference mechanism is the “brain” of the
agent. The “inference” presents a process
that indicates the generation of new conclusions from existing knowledge. The commonest
basis for inferencing is rule considered with if-then statements applied to the knowledge base.
If all defined conditions for a particular rule on the left hand side of the rule are satisfied the
rule’s actions on the right hand side will be executed. The inference engine recognizes and
matches which rules in the knowledge base can be satisfied by provided facts in the working
memory. If one or several conditions are not met, no rule will fire and the agent will wait for
external events. In our case, rules are used to specify a set of agent actions to be performed for
a given situation.

The knowledge base is constantly updated with new facts causing the execution of
new rules. This will again add new facts to the knowledge base and set conditions for firing
new rules. A simplified rule where the order agent checks if enough parts are available for a
product order is presented in Figure 3.19. Once a product order is issued, the order agent
counts the parts needed for production or assembly and if enough parts are available it
reserves these parts for this particular product
order. Otherwise it sends a message to the CA
requesting more parts.

The advantage of this type of
knowledge-based system is to have a simple and
very comprehensive way to represent the
reasoning capability of an agent. This especially
due to the high level of abstraction while
expressing a particular agent’s behavior by
rules. Moreover, rules are usually faster and
cheaper to program then imperative code
concerning their relative independence from
other code as well as easier understanding and
maintenance.

The important part of the agent is its
interaction model used for knowledge exchange,

Input

Output

Knowledge
base

Rules
Inference

engine

Working
memory

Figure 3.18: The decision architecture

CHAPTER 3. THE KASA ENVIRONMENT

58

problem or conflict resolving, as well as negotiation, cooperation and coordination with other
agents. This model provides the basic communicating system and supports the negotiating
process. Autonomous agents cooperate by sending massages and using concepts from domain
ontology. Our agents communicate by sending ACL massages designed especially to describe
and facilitate agent communications and to make it possible to exchange information or
knowledge between the heterogeneous agents [Fou03]. Having an architecture that involves
autonomous agents, we do not need to predefine the interaction for the whole system, since it
emerges from the actions and behaviors of the constituent agents.

3.5.2 The Low Level Control

The Low Level Control layer is built on top of the mechatronic components [Sun05]

(Figure 3.17). Basic mechatronic components are compositions of the physical hardware and
the interface provided to the control hardware (e.g. pneumatic or electrical connectors) to
actuate or sense. Mechatronic components can also be built as a composition of multiple
mechatronic components. For example the mechatronic component “Conveyor” consists of
several components:

- the conveyor,
- the motor (offering electrical connectors to supply the motor and move the belt),
- a power relay, allowing to switch the direction of the conveyor belt movement and

offering electrical connectors, that are apt to be directly connected to low current
micro controller outputs, and

- inductive sensors to sense the presence of pallets [Heg08].
The low level control is established as a distributed control application based on IEC 61499.
This layer includes the control hardware, the interfaces to the mechatronic components, the
IEC 61499 runtime environment, and the
control application [Heg08]. IEC 61499 is a new
standard family of the IEC for Industrial Process
Measurement and Control Systems (IPMCS).
The standard IEC 61499 defines several
models—the application model, the system
model, the device model, the resource model,
and the Function Block (FB) model—that allow
the control engineer to develop distributed
control applications in a graphical manner. The
base model of IEC 61499 is the FB (Figure
3.20). An FB is a software component that is self contained and provides its functionality
through a defined interface. A trigger on one of the event inputs starts the execution of an FB.
During the execution of the FB the input data will be processed, output data will be generated
(depending on the functionality of the FB), and/or output events will be triggered. IEC 61499

Figure 3.20: Graphical representation of the
interface of an IEC 61499 Function Block

[ZoiDiss07]

CHAPTER 3. THE KASA ENVIRONMENT

59

defines three different FB types:the basic FB that contain as main element a state machine
that controls the internal execution on an input event arrival; the composite FB that serve as
container for FBs and may contain a whole set of FBs and their event connections and data
connections; and the service interface FB that provides an FB interface with functionalities
which are beyond the means of IEC 61499 (e.g. access to the control device’s hardware, like
the I/O interface or the communication interface). As said in the state of the art section, IEC
61499 has several advantages that make this standard suitable for the basic control software
architecture for reconfigurable lower level industrial control. First of all, it bases on IEC
61131-3 which it makes easier to switch to the new technology. Furthermore important to
notice are its modularity, its support for distribution, the event-triggered execution model, and
a basic reconfiguration support as the key features for using this architecture as basis in this
work [ZoiDiss07].

3.5.3 Communication Interface between Agents and the Low Level Control

An important aspect of our concept is the existence of a run-time communication

interface allowing to transfer the information from the RT (real time)-control subsystem (i.e.
data from sensors, diagnostic subsystems, etc.) to the agents and, vice versa, to propagate the
control actions decided by the agents to the RT-control subsystem and thus to the physical
actuators. The requirements on the interface between these LLC and HLC layers were
specified by Hegny et al. [Heg08]. The interface shall be independent from the specific
protocols, procedures, media, and software platforms. Furthermore a loose coupling of the
layers (the LLC is subjacent to the HLC layer) shall guarantee that the interface does not
disproportionately burden the LLC, which is capable to keep real-time constraints. The event-
driven execution of IEC 61499 and the asynchronous communication paradigm of software
agents fit well. Therefore, mechanisms of IEC 61499 can be used easily for the interface.
Service Interface Function Blocks (SIFB) encapsulate the access to functionalities provided
by the controllers (e.g. timers, network access, and inputs and outputs). However, to
implement such a communication interface few aspects of communicative commonality have
to be considered as well: the means of communication should be standardized and accepted
by all involved participants as well as the communicative acts have to be also implemented in
a form that enables overall understanding. In our architecture HLC-LLC communication is
done by sending a message with specific content through predefined channels which are
known by both sides [Mer09]. Channels encapsulate the transmission paths between the LLC
and HLC (Figure 3.17). These can be classified into upstream, downstream, and bidirectional
channels, depending on the direction of communication. Upstream means that the message
will be sent to the high level, downstream on the other hand means that messages are sent to
the low level using a specific channel. Besides, the channels are specified with their own IDs.
Few different implementations of the channels are possible:

CHAPTER 3. THE KASA ENVIRONMENT

60

- Network-based: both layers communicate over the network, using widely spread
network protocols like UDP over Ethernet or TCP/IP [Heg08].

- Shared memory: when both HLC and LLC are placed on the same controller, local
inter-process communication such as shared memory can be applied [Lop07].

On the LLC side the implementation of the
interface is done with SIFBs. These define all
aspects of the communication. On the HLC
side, to make the interface usable for agents an
appropriate description in the ontology is
required. Here are again followed the aspects
that separate the semantics of message
transport from message type. In terms of IEC
61499, a message is defined as a set of data
transferred via a SIFB triggered by an event.
Consequently, message types in the ontology
have to represent a fix-ordered list of IEC
61499 data types defining the structure and
encoding of the message [Heg08]. A
representation of these datatypes is included in
the ontology as well as the MessageContent concept, and its subconcepts. These concepts
specify an ordered set of IEC 61499 datatypes, which are used to transmit information
between the layers. The unique name of a message type gives information about the purpose
of the message (e.g. MTCConveyorMovement – content related to the conveyor directions
regulation) and can therefore be checked for correct structure by the transport mechanisms
(Figure 3.21). Channels encapsulate the actual transport mechanism. They cover issues such
as addressing, protocols or content validation. The Class Channel provides a generic channel
representation; it consists of scope (global or local), a unique ID, an assigned related resource
type, and an assigned message type for each applicable direction. A generic interface for the
HLC-LLC interface, which encapsulates the chosen implementation, allows an easy exchange
of the transport mechanism between HLC and LLC entities, which represent the same
mechatronic component, and to transmit and receive information (i.e. messages) on the
existing, previously established communication channels. Status updates and commands are
messages that are necessary to keep HLC and LLC synchronized.

Changing a single aspect of the interface is possible without influencing the other
aspects. For example the transmission channel can be replaced without the need to adapt the
message content (e.g. replacing a multicast-message based network transmission with a
shared memory implementation).

Figure 3.21: Ontological representation
of a LLC message

CHAPTER 3. THE KASA ENVIRONMENT

61

3.6 Implementation

In order to validate our approach, we implemented the multi-agent architecture
presented above. The overall system has been built on top of the Java Agent Development
Environment (JADE) framework [JAD08]. The JADE architecture enables agent
communication through message exchange based on agent communication language (ACL)
[Fou03]. We have used Protégé-2000 [Stanf07] as an integrated software tool to develop the
knowledge base. The reasoning is implemented using the Jess expert system shell [Sandi07].
JessTab [Eri02] is used as a plug-in for Protégé that allows us to use Jess and Protégé
together. The expanded description of the implementation as well as of the mentioned tools
will be given in the Chapter 6.

3.7 Summary

In this chapter, we presented the KASA multi agent architecture with agent classes
corresponding to the defined layered structure of manufacturing system and mapping related
system goals. Our MAS is composed of distributed heterogeneous units/agents, where each
agent has its own objectives, knowledge and skills, has ability to easy absorb the permanent
changes in manufacturing organization and environment. The manufacturing system agility is
improved using ontology to enable knowledge interoperations between agents and to ensure
the same presentation of the shared environment about which they are exchanging
information with each other. Moreover, we used the ontology to integrate product designs,
assembly planning processes and required assembly equipment.

Taking into consideration the real world conditions, where particular actions have to
be performed in a real-time, our architecture divides the control of a manufacturing resource
to the low level control (LLC) and high level control (HLC). The HLC makes long term
decision, has overview over the agent’s knowledge, goals and skills and coordinates
manufacturing resource actions with global manufacturing environment. The LLC based on
IEC 61499 manages actions of subjacent physical resource, acquiring and processing the
information from sensors at the same time. Such agent structure enables high flexibility,
modularity and reusability of hardware and software components.

The next chapter will elucidate the dynamic workflow scheduling and performance of
our architecture under dynamic conditions.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

62

4. Dynamic Scheduling in the KASA

“It is circumstance and proper timing that give an action its
character and make it either good or bad.”

Agesilaus II (444-360 BC)

4.1 Introduction to Dynamic Scheduling

Manufacturing systems are getting every day more complex and dynamic. Assembly
systems, which are integral part of these systems, are also faced with these trends being forced
to produce customized products in a short time at low price and under dynamic conditions.
These assembly systems should also be able to handle failure events, e.g., if a resource
becomes unavailable or overloaded. In such circumstances, appropriately selected and
executed scheduling is a key feature for maximization of the system output. Being able to
optimize a schedule of tasks considering capacity and time constraints is of primary
importance for achieving these objectives [Bab05]. Due to the significance of process
scheduling, extensive research work has been reported [Pin02]. However, the traditional
centralized control approach, due its rigidity and centralized structure, suffers from the lack of
flexibility and reconfiguration abilities especially if unexpected events occur, e.g., resources
become unavailable, variations in job processing times, or sudden changes in task priorities.
Moreover, the central unit could be also seen as a bottleneck, which may limit the capacity of
the shop, and as a single point of failure, which can bring down the entire shop [Oue07]. The
multi-agent system (MAS) approach, based on decentralized control architecture, has been
suggested as an alternative to centralized control and scheduling [Bus04]. The main MAS
characteristic related to the scheduling is that within this architecture each agent is responsible
for scheduling of its own tasks as well as for supporting global system scheduling through
coordination and interaction with the other agents. The global scheduling emerges from the
local agent’s scheduling. The application of an agent-based approach in the scheduling
domain tends a) to simplify the design and implementation of the scheduling system, b) to
make the system more robust, and c) to reduce computational time and consequently the time
needed to obtain a reasonable solution [Bab05, Jen03]. We employ MAS in combination with
different dispatching rules to study dynamic scheduling strategies with particular attention on
parallel machine scheduling strategies. In parallel machine scheduling, there are n tasks that
have to be allocated respecting a set of constraints (capacity, due date, processing time, etc.)
to m machines, each of which is running at its own speed. Our MAS assembly system is
modeled as closed queuing transfer network with redundant paths, where each machine
station connected to at least one transfer path (conveyor) can perform a particular operation.
The order of tasks, which have to be accomplished to finish the product, is fixed and each
product as well as the related tasks can have different due dates.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

63

4.2 Task Scheduling

The performance of the production system is affected with the choice of optimal

strategies. Especially, if there exist recourses having scientifically bigger workload than other.
In this case the machine with the maximum workload is the bottleneck. Balancing the
workload between available resources will help to avoid such preventable limits and improve
system output. Balancing the workload between parallel machines, considering the current
system state, has been recognized as a potential way to flexibly schedule appropriate
operations. Particularly in complex environment, this approach can maximize the overall
system throughput, minimizing the work in process, flow time, and makespan [Raj04].
Moreover, it can increase resource utilization and hence improve productivity; and at the
same time can help to avoid bottlenecks and to schedule unavailable resources.

However, the parallel machine scheduling problem has two separate aspects: resource
allocation and task sequencing. Resource allocation concerns the assignment of tasks to
appropriate machines that can handle such tasks, while task sequencing prioritizes the tasks
assigned to a machine. Our approach is structured according to these aspects: (i) resource
allocation that is based on the negotiation between agents and (ii) task sequencing based on
workflow balancing and dispatching rules for machine agents. Significant research results
have been reported in the field of parallel machine scheduling [Che90, Mok01]. Agents in
combination with dispatching rules have been tested for dynamic scheduling in [Yin07,
Raj99, Won06]. Various agent architectures for dynamic scheduling in flexible manufacturing
systems have been reported [She02].

4.2.1 Task allocation

Many optimal and approximation algorithms for solving different types of scheduling

problems have been developed and tested [Bla01]. In the distributed approach, the tasks
allocation and execution is a result of the coordinated activities of many agents. Moreover,
additional constrains/parameters (capacity, due date, processing time, etc.), which are
specifying the properties that must not be violated, have been used in order to specify the
width of a valid scheduling solution. Each agent schedules its own actions according to its
current knowledge about the environment. To stay coordinated, agents need to synchronize
their activities using inter-agent communication. As mentioned in previous chapter, we are
using CNP to assign the task to the machine with the lowest workload. Our approach
introduces the SA, whose main responsibilities are: (i) to send a call for proposals on tasks
allocation to machine agents, (ii) to receive proposals for a particular task from the machine
agents (Tagendatotal), (iii) to compare the proposals, and (iv) to finally allocate the tasks. The
main objective for applying the negotiation strategy is to balance the workload among the
resources evenly.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

64

)1.4(
Pt
RtCR =

4.2.2 Task sequencing

The dispatching rules have been used by MAs for sequencing the tasks allocated to

their machines. Dispatching rules are extensively applied in manufacturing practice due to
their simplicity, effectiveness, and their nature of an on-line algorithm [Hol97, Pes01]. Their
usage for the local scheduling optimization of production lots with regard to various
indicators, e.g., due date, machine utilization, has been a long-established research field
[Cha02, Raj99]. Moreover, the structure of dispatching rules corresponds to rule-based
behavior of our agents and is easy to implement. MA is using the dispatching rules after the
current task is completed for selection of a next suitable one from a set of tasks that are
awaiting for being processed by a machine. At this time, the related subassemlies/parts are
already on the way to the machine, being immediately transported after ACCEPT
PROPOSAL from bidding phase (if there are pallets available). In order to select the best
suited dispatching rule for implementation in our system, we created four scenarios in which
MAs alternately tested one of the following rules:

1. First Come, First Served (FCFS): The first allocated task is executed first.
2. Critical Ratio (CR) expressed as:

where Rt is the remaining time from the current time to the due date of a product and
Pt is the sum of processing times of all remaining tasks that make up that particular
product. A lower CR indicates that the task has a tighter due date or longer processing
time. A task with a lower CR is given higher priority than tasks with higher CR.

3. Earliest Due Date (EDD) gives the highest priority to the task with the earliest due
date. The task inherits the due date from the related product.

4. Shortest Processing Time (SP): The task with the shortest processing time is
sequenced first.

4.2.3 Simulation approach

We have used the Manufacturing Agent Simulation Tool (MAST), which is able to
provide agent-based simulation support for our empirical study [Vrb08], to simulate various
scenarios. The Test Management System (TMS) is used for automatically run predefined sets
of test cases described in XML files [Mer08d]. These tools are easy to couple with our system
architecture, since both systems use the JADE framework and almost identical MAS
architecture [Mer08e]. The characteristics of the used architecture and the implemented
production workflow are presented in previous chapter. The simulated Test bed layout is
presented in Figure 4.1.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

65

Figure 4.1: Simulated MAST Layout and the Test Management System.

A total of 600 test cases have been generated with the TMS. Each test case consists of
a workflow scheduling strategy (FCFS, CR, EDD, SP), the number of pallets to use (5, 10, 15
and 20) and a workload of 40 orders. An order consists
of a product type to be built and a randomly generated
due date (defined in seconds) for the product. For
simplicity, three pre-defined product types were used –
simple, medium and complex – that differ in the
number of machine operations and raw materials/semi-
products needed to assemble the final product. So
called product trees depicting both required raw materials (ovals) and assembly operations
(rectangles) for these three product types are shown in Figure 4.2. The shift time for a test
case was set to 10 minutes (600 seconds). This value was chosen in order to ensure that 40
randomly generated orders could not easily be finished without a proper workflow scheduling
strategy. This implies that the overall time needed for producing all workload items is larger
than the set shift time, resulting in less items being produced than actually ordered. Otherwise,
if all ordered products would haven been produced, we would not have been able to measure
the effectiveness of the chosen simulation parameters by using the number of finished prod-
ucts as a reliable parameter.

4.2.4 Simulation Results

Two kinds of measurements were carried out: a) the measurement of the effect of the

number of pallets used together with the workflow scheduling strategy selected on the number
of finished products, and b) the measurement of the impact of the selected workflow
scheduling strategy on the machine utilization rates. The following section describes the
results of the first type of measurements in detail (the second type results can be found in
[Mer08d]).

St
or

ag
e

Machine 1

Machine 2

M
ac

hi
ne

 4

M
ac

hi
ne

 5

M
ac

hi
ne

 3

Machine 6

Figure 4.2: Product types

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

66

The number of finished products is defined as the sum of all products which have been
produced within a given shift time. The number of finished products measures the
effectiveness of the workflow scheduling strategy parameterization, e.g., number of finished
products in relation to the number of pallets used. In Figure 4.3 we show the number of pallets
as significant predictor for the average number of products finished within a shift. Note that
above a certain number of pallets the effectiveness increase due to faster transportation
declines, for one strategy (FCFS) the number of finished products is even lower with a higher
number of pallets.

In the experiments we used different numbers of pallets (5, 10, 15 or 20) combined with
workloads of 40 products randomly selected out of 3 different product types (simple, medium,
complex). Table shows that the combination of Critical Ratio (CR) as workflow scheduling
strategy and different number of pallets provides the highest number of finished products in
average and could be considered as the best strategy. The CR, Shortest Processing Time (SP),
and Earliest Due Date (EDD) strategies have shown that by adding more pallets into the
workshop the number of finished products within a shift will increase. Just to give examples:
by increasing the number of pallets from 5 to 10 the average number of finished products will
increase by 68 % in SP, 62% in EDD, 61% in FCFS and 49% in CR. However, we can also
observe while analyzing FCFS that by increasing the number of pallets from 15 to 20 the
average of finished products will drop by 2% - therefore we conclude that FCFS has better
usage for lower number of pallets compared to other strategies such as EDD and SP.

The reason is that the SP, EDD and CR strategies always utilize the maximal number
of pallets to deliver parts from the storage to the machines for assembling in parallel. In
contrast, the First Come First Served (FCSF) strategy uses only a limited number of pallets,
since the SA will not send further orders to the production line, until the first product is
assembled.

Number of Finished Products

SP FCFS

Pallets Mean STD Mean STD
5 15,83 1,21 16,40 1,14
10 26,66 5,95 26,46 5,59
15 34,77 10,27 34,96 6,53
20 36,03 7,06 33,95 8,91
 EDD CR
Pallets Mean STD Mean STD
5 14,33 1,33 20,60 1,67
10 23,22 5,70 30,73 4,31
15 32,58 7,59 36,22 4,75
20 34,76 5,92 37,54 3,95

Figure 4.3: Number of finished
products within a shift.

Table 4.1: Comparison of Number of
Pallets and Number of Finished Products.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

67

)2.4(
tTPt

RtCRT
+

=

4.3 Task Scheduling Considering Transportation Times and Conveyor
Failures

Traditional calculations for workflow scheduling strategies focus only on machine

service duration; however, in some contexts the variation of transport time is a significant
scheduling factor. It is possible that the distance to the selected resource and transportation
time needed could significantly influence the efficiency of the overall system [Byr97],
especially when the transportation times between machines are considerably longer than the
machine processing times. Lee and Chen as well as Hurink and Knust studied machine-
scheduling problems considering transportation time and capacity [Byr97, Lee01].
Subsequently, Lee et al. considered disruption management and rescheduling [Hur01].
However, applying this approach in a centralized control system (with the associated
difficulties in handling a large complex system) leads to an exponential growth in the number
of possible scheduling solutions [Lee06, Hah94]. Moreover, since the manufacturing
processes regularly change their states and settings, which may make previously optimal plans
suboptimal; thus, we see the need for a more flexible approach able to provide reliable
solutions in “near-real time”. We have investigated how balancing control policies in
combination with transportation time calculation influence the overall system performance in
production under different operating conditions.

4.3.1 Task allocation and sequencing

The task allocation procedure starts when the SA sends an announcement message to

all MAs which offer the required machine function. The MAs answer with a bid message
containing the estimated processing time of the machine function plus the estimated time
needed for the transportation to the machine. The SA then chooses a MA with the minimal
sum of machine function and transportation time and allocates the current task to this MA and
the represented machine respectively by sending a bid confirmation message to the particular
MA. On the other hand, the machine agents are, as described in previous section, using
different dispatching rules (FCFS, EDD, CR and SP) to select the next job in the waiting
queue. Additionally, we extended the CR and SP rules by adding the transportation time to
machine to the calculation of the processing time, which is calculated in order to select the
next task to be scheduled.

1. Critical Ratio + Transportation Time (CRT): Defined as quotient of the sum of
processing times of all remaining tasks (Pt) for a product and transportation time (Tt)
to the machine for this particular task with the remaining time from the current time to
the due date of the product (Rt). The task with the lowest CRT is selected.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

68

2. Shortest Processing + Transportation Time (SPT): Defined as the ratio of the sum of
the duration of the next task (Ttasktotal) and the transportation time (Tt) to the machine for
this particular task with the total processing time of the product (TProductotal). The task
with the lowest SPT is selected.

∑
=

=
n

i
taskPnoduct iTT

totaltotal
1

)3.4()(

)4.4(
total

totaö

product

ttask

T
TT

SPT
+

=

The performances of selected dispatching rules have been empirically evaluated and
compared. The MAST is used again to build scalable and flexible production systems with an
underlying transportation system (Figure 4.4). The TMS has been used to measure system
performance under stable conditions and when facing unexpected events (e.g., failures of the
transport system - conveyors), which influence the variation of transport durations.

Figure 4.4: Overview System Architecture

4.3.2 Simulation approach

A total of 1,085 test cases were generated from the scheduling strategies as input to the

TMS. Each test case consists of a scheduling strategy (FCFS, CR, EDD, SP; CRT, SPT), the
number of pallets to use (10, 15 and 20), failure specifications and a workload of 25 orders.
An order consists of a product type to be built (Figure 4.2) and a randomly generated due date
for the product. The shift time for a test case was set to 600 seconds to ensure that 25
randomly selected orders could not easily be finished in the study context without a proper
workflow scheduling strategy (see Section 4.2.3).

The failure specification consists of the identifier of the affected resource to fail, the
start and end points in time of the occurrence of the failure. We classified the risk of a failing
conveyor (according to the position and the importance of the conveyor for the overall
system) for all conveyors in the workshop to 5 failure classes (see Table 4.2). For effective
comparison of the robustness of workflow scheduling strategies regarding their exposure to

Supply Agent

Machine Agent

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

69

failures in the transportation system,
failures with the same specification were
used for all workflow scheduling
strategies.

4.3.3 Simulation Results

In this section we present the

results of the data analysis, which
signify the change in production
effectiveness due to a) the application of
transport time consideration into the
scheduling approaches and b) introduction of several classes of transportation failures. Figure
4.5 shows that adding more pallets increased the number of finished products within a shift
which holds true for all strategies. In Figure 4.5, when using 10 pallets, SPT offers the best
overall production performance (Mean: 15.6 and STD: 1.8), however when increasing the
number of pallets to 15 and 20 respectively, CRT outperforms the others strategies.

In Table 4.3 we can see that by increasing the number of pallets in the workshop from 10 to
15, the average number of finished products increases too, depending on the scheduling
strategy: CR (33%), EDD (26%), FCFS (23%), and SP (4%). Additionally, we analyze the
impact of including the transportation times in the calculation of the CR and SP dispatching
rules. Figure 4.5 outlines both extensions offer slightly better results as CRT improved the
performance of CR by average of 3 %, while SPT improved the performance of SP by 5%.

Failure
Class Failure Impact

C0 No failure
C1 Failures of redundant conveyors which

cause almost no detours
C2 Failures of redundant conveyors which

cause long detours
C3 Failures of conveyors resulting in the

unreachability of a single redundant
machine

C4 Failures of conveyors resulting in the
unreachability of multiple machines

Table 4.2: Failure Classes and Risk Analysis

Number of Finished Products

CR CRT EDD

 Mean STD Mean STD Mean STD

10 14,11 1,07 14,11 1,45 11,21 1,29
15 18,92 2,81 19,15 3,37 14,32 2,28
20 20,89 3,38 21,22 3,70 16,33 3,12
 FCFS SP SPT

Mean STD Mean STD Mean STD
10 11,64 2,30 15,21 1,60 15,65 1,75
15 14,15 2,83 16,49 1,98 16,67 2,42

N
um

be
r

of
 P

al
le

ts

20 16,80 3,23 18,38 2,00 18,88 2,31

Figure 4.5: Production effectiveness
without failures for 6 work scheduling

strategies

Table 4.3: Average number of finished
products for 6 work scheduling strategies (no

failures)

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

70

In the second scenario, we analyze the results of introducing transportation failures
into the simulation. We ran 210 test cases consisting of 10 test cases for each combination of
strategy with class of failure. Therefore we can analyze the performance of each strategy by
given the higher possibility to reach their maximum performances. Our data analysis suggests
that introducing failures of a higher failure class statistically will likely reduce the number of
finished products (Table 4.4). Figure 4.6 shows that without any failure all strategies offer
their best performances compare to scenarios with failure, CRT and CR provide better
performance in finishing the products as ordered while coping with failures compared to the
other strategies. In Table 4.4, adding the first failure class reduced the average number of
finished product by: CR (5%), CRT (7.4%), EDD (11%), FCFS (6%), SP (1%) and SPT
(8.8%).

We have conducted an empirical study on the impact of scheduling strategies
(dispatching rules), number of pallets available, and transport system failures on system
performance, measured the number of finished products in a shift. For this empirical study we
ran extensive simulation tests for data collection and statistical data analysis. The system
performance, measured with and without inclusion of transportation times, has shown some
improvements when transportation times were included in the calculations. In order to

investigate the ability of agents to manage dynamic environment conditions (such as machine
failures) in the production automation domain applying dynamic dispatching rules and
diverse failure handling mechanisms, we have done extensive tests by measuring system
robustness and systematically comparing the overall system performance (e.g., number of
finished products). This research will be presented in the remaining part of the chapter.

Figure 4.6: Production effectiveness
with failures for 6 work scheduling

strategies and 20 pallets

Table 4.4: Average number of finished
products for 6 work scheduling strategies
(with transport failures) using 20 pallets

Number of Finished Products
CR CRT EDD

 Mean STD Mean STD Mean STD

0 20.10 2.60 21.40 3.30 14.69 3.75
1 19.09 1.44 19.81 1.72 13.09 2.42
2 17.66 1.41 18.55 2.69 12.60 2.50
3 16.00 1.26 17.45 1.75 12.00 2.09
4 15.12 .835 16.37 1.18 10.88 1.83
 FCFS SP SPT
 Mean STD Mean STD Mean STD
0 14.54 2.29 17.36 2.29 19.54 2.01
1 13.63 3.58 17.27 2.32 17.81 2.22
2 12.72 2.14 15.44 1.50 16.88 1.36
3 10.54 2.06 15.07 1.11 15.53 1.39

Fa
ilu

re
 C

la
ss

es

4 9.66 1.37 13.30 1.06 14.37 1.06

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

71

4.4 Re-Scheduling Using Machine Failure Handling Policies

Besides the rapidly changing market environment and customer requirements, current

manufacturing systems also have to face dynamic conditions during the production process.
Machine breakdowns or disturbances, task priority changes, integration of new resources,
order cancellations, unequal machine utilization rates, and product quality problems are some
of many exceptions that can influence the system performance and typically occur
unpredictably. If the system is able to handle a particular fault situation and continues to
operate without a significant loss of functionality, it is called fault tolerant [Hag96]. Fault
tolerant systems should exhibit proportional degradation of service (e.g., throughput)
depending on the class of problem that occurs. There is a range of failure handling policies to
respond to exceptions and thus to improve the system tolerance. Traditional centralized
hierarchical manufacturing systems, due to their rigid structure and lack of flexibility, suffer
from weak failure tolerance, i.e., they are not able to handle such events effectively and
efficiently, meaning that they either stop working or produce less products. Moreover, in
these traditional systems all possible combinations of exceptions have to be predicted at the
design time, otherwise their occurrence in real time can lead to scheduling errors and
significant downtime related losses. Nevertheless, in complex systems the number of
combinations grows exponentially which makes system re-scheduling and modification very
expensive or time consuming [Tic06].

The application of the multi-agent systems based on decentralized control architecture
has been suggested as a promising approach for overcoming these difficulties [Bus04].
Nevertheless, a blind application of the MAS approach to increase fault tolerance of a
particular system can lead to the opposite result [Tic06]. It is necessary to empirically
investigate MAS performance under dynamic conditions, when agents use a range of
promising behaviors and apply diverse handling policies in order to cope with system
exceptions.

Considering the scheduling of production resources as a one of the key features of
production control, in this section we examine the influence of re-scheduling on production
effectiveness. Failure re-scheduling policies specify the overall tactics that define when and
how the system has to cope with failure events. Several handling policies for task re-allocation
carried out in case of extra-ordinary events (e.g., machine breakdowns) are explored in this
study. In the section 4.2, we evaluated a range of workflow scheduling strategies based on
multi-agent negotiation, where each resource agent performs local scheduling using
dispatching rules for sequencing the tasks allocated to their machines. Considering their
advantages, the usage of dispatching rules for sequencing rescheduled tasks after a specific
handling policy is applied can reduce effects of a particular exception and improve system
performance [Vie03]. Kutanoglu and Sabuncuoglu [Kut01] used this approach to study four
reactive scheduling policies – no rerouting, queue rerouting, arrival rerouting, and all
rerouting – developed for rerouting the jobs to alternative machines when their primary

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

72

machine fails. Bastos et al. [Bas05] presented a multi-agent architecture capable to support
dynamic resource allocation planning in production environments. This architecture also can
manage disturbances in the production system in real time by applying two strategies –
replacement and re-scheduling. A market-based theory coordinates agent behaviors. Wu et al.
[Wu07] presented an algorithm for automatic sequential resource (re)allocation among a
group of agents in complex environments with limited shared resources and with
uncertainties. Vieira et al. [Vie03] extensively studied the effects of re-scheduling policies on
the performance of a manufacturing system. They concluded that the use of different model
types, such as a mathematical model of dynamic and stochastic manufacturing systems,
queuing network model or discrete event simulation model, can give useful information to
analysts. However, the mathematical model does not explicitly represent the production
control policies that will be actually used to control the system. Furthermore, additional
research is required to compare the performance of a manufacturing systems under diverse
dynamic conditions to explain the advantages and disadvantages of re-scheduling in different
problem settings.

Moreover, we simulate the real-life scenarios to test system performance in a dynamic
environment. In this paper, we evaluate the failure tolerance of several re-scheduling policies
from literature, where agents negotiate to coordinate their actions and apply dispatching rules
for local scheduling. We also investigate how specific production conditions such as different
levels of machine efficiency as well as duration of machine failures influence the performance
of a handling policy. In order to strengthen the external validity of our research results, we use
the real-world pallet transfer system at the Institute for Automation and Control, Vienna
University of Technology, as a reference model for our MAS architecture.

In the rest of this section, we evaluate the failure tolerance of several re-scheduling
policies from literature, where agents negotiate to coordinate their actions and apply
dispatching rules for local scheduling. We also investigate how specific production conditions
such as different levels of machine efficiency as well as duration of machine failures
influence the performance of a handling policy. In order to strengthen external validity of our
research results, we simulate the real-life scenarios to test performances of our MAS
architecture in a dynamic environment.

4.4.1 Re-scheduling Policies

The way how manufacturing systems treat the exceptional events can significantly

influence their performance. Using predefined schedules, such systems are doing well if
every-thing is going well. However, it is of vital importance to define their reaction on
unexpected events. A re-scheduling policy specifies what event triggers re-scheduling and
what method will be applied for re-scheduling. Moreover, it also specifies the method applied
for revision of the existing schedules [Vie03]. Three policies related to the re-scheduling
initiation events have been presented in literature [Sab00, Oue07] – periodic, event-driven,

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

73

and hybrid. A periodic policy is periodically initiated with a defined time period during which
all available system information is collected and then used for deriving the re-scheduling
setting. However, the effectiveness of this policy depends on the optimally adjusted length of
the period, which might be hard to effectively anticipate. Moreover, this policy is not agile
enough because critical events, which require prompt reaction, are not processed immediately,
but wait at the end of the re-scheduling period. This is not the case for event-driven re-
scheduling triggered immediately when the specific event (e.g., job arrival, machine failure)
occurs. However, in a large system, where the number of such events happening
simultaneously can be enormous, the application of this policy can lead to continuous
rescheduling and thus to lower stability and performance. A hybrid re-scheduling policy can
be seen as combination of previous two approaches as the system re-schedules periodically as
well as when specific, user-defined events occur, synchronizing policy occurrence avoiding
their overlapping (e.g. to have periodic and event-driven rescheduling at the same time).

Having a smaller manufacturing system as a test case, we decided to apply an event-
driven re-scheduling policy, considering machine failures as events that trigger re-scheduling.
We implemented and tested four agent-based schedule repair methods corresponding to
methods presented in [Kut01]:

1. Right-shift scheduling (RS): when a machine breaks down this method postpones the
job being currently processed as well as all other jobs that are waiting in the
machine’s queue until the machine is repaired. During the repair time period the
machine agent (MA) that is in the charge of this machine still responds to calls for
bids from supply agents (SA), offering its free capacity in “after-repair” period.

2. Agenda rerouting (AR): after the machine fails all jobs from the machine’s queue are
rerouted to alternative machines. In contrast to previous case, the time that the jobs
loose by waiting in the machine’s queue for its repair can be saved. However, also in
this case the MA bids on its services during the negotiations with the SA about new
jobs.

3. New jobs rerouting (NR): in this case the MA keeps all jobs in the machine queue
while refuses to bid on new arriving jobs. This policy tends to avoid the additional
load to failed machine by not accepting new job arrivals and to prevent system stress
through the machine queue jobs rerouting.

4. Complete rerouting (CR) policy: combines the AR and NR methods. The machine’s
MA addresses the SA’s of jobs that are scheduled to the failed machine to reroute the
jobs to alternative machines as well as does not participate in subsequent negotiations
with SAs about new jobs.

Due to its simplicity, the RS policy is mostly applied by current manufacturing systems. Thus
we consider it as a reference policy in our study. The AR and NR could be referred to as
partial scheduling policies while the CR represents a regeneration policy. As mentioned in the
introduction section we are additionally applying dispatching rules to handle dynamics of
manufacturing environment. These rules are used by MAs, which supervise functioning of

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

74

machines for optimal sequencing of allocated jobs. The important advantage of dispatching
rules is the ability to select the highest priority job from the machine’s queue considering all
reliable up-to-date information at the time of selection. We are using the Critical Ratio rule to
prioritize jobs, because (as presented in section 4.2.4) it showed the best performance in
comparison to others dispatching rules.

4.4.2 Research Issues

In the context of the empirical study, we define system performance, equivalent with
the production effectiveness function E, as the average number of finished products within a
given shift. As argument we consider following parameters: level of workload, number of
pallets, re-scheduling policy, and type of failure. We define the following research hypotheses
to be validated by the experiments:

RI1: Influence of number of pallets on system performance E. Let us assume that a
higher number of pallets will result in a higher overall system output. IF n and m are the
number of pallets introduced, and E is the production effectiveness function, THEN we define
the following null hypothesis:

H0-1: (n)} (m)|n >m{ EE ≤∃ (eq. 4.5)
RI2: Impact of re-scheduling policy on system performance E. Let us assume that

the use of different re-scheduling policies will result in a diversity of resulting system outputs,
because some re-scheduling strategies include the machine agents representing broken
machines into the negotiation process, while others do not. Furthermore, the different
handling of already queued or future awarded jobs to broken machines could also have a
significant impact on the overall system performance. IF α represents the AR re-scheduling
policy, β represents the NR re-scheduling policy and γ represents the CR re-scheduling policy,
THEN we can define the following null hypothesis:

H0-2: }))()(min()(| ,,{ βαγγβα EEE ∨≤∀ (eq. 4.6)
RI3: Impact of failure type on system performance E. Let us assume that the

duration of machine’s unavailability (two different periods for machine failures and machine
disturbances) has a direct influence on the overall system performance. IF f is a machine
disturbance (faster recovery) and s is a machine failure (slower recovery), THEN we propose
the following null hypothesis:

H0-3: (s)} (f)| sf,{ EE ≤∀ (eq. 4.7)
RI4: Impact of workload level on system performance E. Let us assume that the

number of orders directly influences the relative system performance. IF l represents a lower
number of received orders and h represents a higher number, THEN we identify the following
null hypothesis:

H0-4: })()(| >{
h
hE

l
lElh ≤∃ (eq. 4.8)

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

75

4.4.3 Simulation Approach

This section describes the details of the simulation experiment carried out in MAST-
TMS environment. A total of sixty four evaluation scenarios have been tested. In each test
case, the Critical Ratio dispatching rule has been applied and different values of following
parameters set: the re-scheduling policy (RS, AR, NR and CR), the number of pallets
providing transportation (10, 15, 20, or 25), the machine failure recovery time (f - faster
recovery or s - slower recovery) and the level of workload (l – low: 2,880 or h – high: 5,760
number of orders). An order consists of a product type to be produced and randomly
generated due date (in seconds). We used three pre-defined product types as shown before in
Figure 4.2. Machine operation times and transportation times were considered as fixed for all
evaluation scenarios. The shift time for an evaluation scenario was set to one full day (24
hours) to ensure that depending on the used workload a set of randomly selected orders could
not easily be finished in the study context (see Section 4.2.3).

The machine failure specification consists of the machine identifier and start/end time
points of the failure. We classified the risk of failing a machine using two different failure
classes: machine disturbances (f – faster recovery), which can be re-paired in approximately
0.1% of the overall shift time, and machine failures (s – slower recovery), which requires a
longer repair time, in our case about 10% of the overall shift time. For effective comparison
of the robustness of the re-scheduling policies, failures with the same specifications were used
for all evaluation scenarios. We used a workshop layout consisting of four machines, each
capable of performing between 2 and 4 different machine operations, presented before in
Figure 4.4. The sixty four generated evaluation scenarios were split down into four batches,
each containing sixteen test cases and particular re-scheduling policy applied. These batches
were run in parallel on four high-performance mainframe servers, taking it approximately
eight hours to finish a single batch. After all tests had been finished, the resulting data were
collected from the mainframe servers and analyzed using various statistic tests.

4.4.4 Experimental Results and Discussion

We explore the impact of additional factors such as failures, disturbances, overloads,

etc. on the system output. Especially, we judge the manufacturing system ability to absorb a
machine failure using predefined failure tolerance policies. As important factors we consider
different duration of machines down-time, diverse levels of production workload as well as
various number of transportation units (pallets).

A) Number of finished products considering all factors

Similarly to Kutanoglu and Sabuncuoglu in [Kut95], but applying the decentralized
multi-agent control and using CNP for workload balancing, we reached the same conclusion –
the superiority of CR (complete rerouting) policy over the other policies. As presented in

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

76

Figure 4.7 as well as in Table 4.5
showing the mean numbers of
finished products depending on
number of palettes, the CR policy
outperforms RS (right-shift
scheduling) policy approximately
by 12% to 16%. This is an
expectable result because the
immediate exclusion of the failed
machine from production and full
re-scheduling of tasks in its
queue to other available
machines significantly
compensates the failure state
when no action would be taken in
case of RS policy (the tasks in
machine’s queue have to wait for
machine repair). This is of course
true only if suitable alternative
resources are available.

Notable is a good
performance of the NR (new jobs
rerouting) policy, which proves that the failed machine should be urgently excluded from
further scheduling until repaired. How-ever, due the fact that the NR policy keeps already
awarded jobs in machine’s queue, its performance is approximately by 5.6% to 6.6% weaker
than of the CR policy. Interesting fact is also the influence of number of pallets on production
performance. The 150% increase of pallets results only in 15% gain in production output.
This can be justified by increased number of traffic jam situations caused by a limited space
for palettes in a conveyor-based transportation system.

B) Number of finished products focusing on failure duration
Extensive experiments have also been done to identify how the efficient failure

recovery impacts the system performance. As mentioned earlier, in a general overview, the
CR-(f - faster recovery or s - slower recovery) policy wins the race, but relation between the
NR-(f,s) and AR-(f,s) policies deserve deeper study (consult Figure 4.8 and Table 4.6).

While the difference between the NR-f and AR-f policies, when short disturbances
periodically occur, stays almost constantly around 1% in favour of the NR-f policy, this ratio
notably grows when the failure duration prolongs (NR-s and AR-s curves respectively) and
the number of pallets rises. The fact that the NR-s policy performs by 8% better than AR-s
when using 25 pallets can by explained such as this policy is handi-capped just by those

Figure 4.7: Mean of finished products of a shift by

strategy

Number of Pallets

10 15 20 25

 Number of finished Products
Strategy

Mean STD Mean STD Mean STD Mean STD

RS 509 64 522 68 551 71 577 75

AR 532 71 549 71 580 75 606 78

NR 539 69 555 72 586 77 632 58

CR 575 74 591 77 619 86 669 66

Table 4:5: Finished products
by number of pallets and re-scheduling policy.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

77

products which are already
awarded to the machine while
all others incoming after the
failure are re-balanced to other
available machines. On the
other hand, the AR-s policy
profited by re-scheduling of the
queued jobs, but only to such a
point where the number of
palettes in the system caused
traffic jams and consequently
increased the number of
unfinished products that were
on their way to alternative
machines instead of waiting in
the machine’s queue for repair.
This finally resulted in weaker
performance of the AR-s
policy.

C) Number of finished

products focusing on
workload

The introduction of two
levels of workload (l – low:
2,880 or h – high: 5,760 orders respectively) has again confirmed the supremacy of the CR-(l,
h) policy (see Figure 4.9 and Table 4.7).
It is interesting to note here that the system with higher workload, especially due to the
overloading and traffic jam, has shown a 4.7% to 6% weaker performance. Nevertheless, even
then the CR-h policy with a higher workload was able to outperform all remaining policies.

D) Empirical Results

Analyzing the empirical results, we derive the following implications for the impact
factor analysis regarding the re-scheduling policies:

Figure 4.8: Influence of failure duration (f -
faster recovery or s - slower recovery) .

Number of Pallets

10 15 20 25

Number of finished Products
Strategy

Mean STD Mean STD Mean STD Mean STD

RS‐f 564 71 579 75 610 79 640 83

AR‐f 592 79 608 79 642 83 672 86

NR‐f 598 76 615 80 650 85 679 62

CR‐f 638 82 655 85 692 96 724 71

RS‐s 455 57 466 61 491 63 514 67

AR‐s 472 63 489 63 517 67 541 70

NR‐s 481 62 495 64 521 69 585 54

CR‐s 512 66 527 69 547 76 615 61

Table 4,6: Finished products by defined failure
duration.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

78

Influence of number of
pallets on system performance
E. The data analysis shows that
an increase of the number of
pallets will increase the overall
system output. As shown in
Table 1 the number of pallets
has a significant impact on the
overall system performance (in
terms of number of finished
products) with a p-value < 0.01.
In the study context, an increase
of the number of used pallets
(i.e., from n to m) always
increased the number of
finished products. Therefore we
can state that

 (n)} (m)|n >m{ EE >∃ , and so
we can reject null hypothesis
H0-1.

Impact of re-
scheduling policy on system
performance E. As shown in
Figure 3, the Complete
Rerouting (CR) policy outperforms all other rerouting policies (p-value < 0.01). Therefore,
we conclude that the overall system performance of the CR policy (γ) is higher than the
system performance of all other rerouting policies, namely the NR (β) and AR (α). We can
state that }))()(min()(| ,,{ βαγγβα EEE ∨>∀ , and hence we can reject null hypothesis H0-2.

Impact of failure type on system performance E. Figure 4 shows that the failure
recovery time has a direct impact on the resulting overall system performance. A faster failure
recovery (f) will increase the production effectiveness, while slower failure recovery (s)
decreases the production effectiveness with a p-value < 0.01. In the study context, a decrease
of the failure recovery time always led to an increased number of finished products. Therefore
we can state that (s)} (f)| sf,{ EE >∀ and reject null hypothesis H0-3.

Impact of workload level on system performance E. As shown in Figure 5, the
number of orders directly influences the relative system performance. As observed in the
experiment, an increase of the number of orders (i.e., from l to h) will statistically lead to a
decreased overall system performance. Therefore we can state that

 })()(| >{
h
hE

l
lElh >∀

and reject null hypothesis H0-4.

Figure 4.9: Influence of different levels of

workload (l – low: 2,880 or h – high: 5,760 orders)
Number of Pallets

10 15 20 25

Number of finished Products
Strategy

Mean STD Mean STD Mean STD Mean STD

RS‐l 522 66 537 70 566 73 593 77

AR‐l 547 73 564 73 596 77 623 80

NR‐l 552 71 571 74 602 79 650 60

CR‐l 589 76 608 79 635 87 688 68

RS‐h 497 62 508 66 535 69 561 73

AR‐h 518 69 533 69 564 73 590 76

NR‐h 527 67 539 70 569 75 615 56

CR‐h 562 72 574 75 603 82 651 64

Table 4.7: Finished products by level of
workload.

CHAPTER 4. DYNAMIC SCHEDULING IN THE KASA

79

4.5 Summary

The simulation results indicate that the concept of multi-agent approach is well suited
for building complex systems featuring a good performance. Moreover, due to its distributed
nature it is possible to optimize the output of the system components consequently, resulting
in an increase of the system efficiency. Our simulation results indicated that the critical ratio
offers better results than the other tested rules. The system performance, measured with and
without inclusion of transportation distance as well with and without failures, has shown some
improvements when transportation times were included in the calculations. Comparing the
different re-scheduling policies, we concluded that complete rerouting policy remarkable
outperforms all other policies. Our experiments show that a higher number of pallets in fact
always increased the number of finished products, but due to traffic jams with diminishing
marginal gains. Further, longer failure durations have a certain impact on the overall system
performance, since the number of products in the queue as well as the participation of a failed
machine in the job allocation process seriously influences system performance. Finally, we
found in the study context a limited size of workload to lead to higher system output, because
of the lower system utilization and fewer occurrences of traffic jams.

This work can be leveraged in terms of implementing proactive re-scheduling policies
and evaluating and comparing their performance to the performance of reactive re-scheduling
policies. Additionally, more complex workshop layouts (more machines, more complex
routes) could be used to compare the performance of the presented re-scheduling policies.
Moreover, future work can leverage the results of this thesis by analyzing and evaluating
combined impact of transport system failures and machine failures on the system efficiency.

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

80

5. Failure Tolerance in the KASA

“If everything seems to be going well, you
have obviously overlooked something.”

Murphy’s Law

5.1 Introduction to Failure Tolerance

We noticed in the second chapter that serious concerns regarding the robustness and

survivability, especially in complex and unpredictable environments, restrict wide adaptation
of multi-agent systems in industry [Hel04]. Consisting of autonomous entities/agents that
have to cooperate and coordinate their activities, the performance of multi-agent systems
(MAS) could be significantly influenced with the failure of particular agent(s). While their
modularity establishes MAS as good platforms for building fault tolerant systems on the one
side, their non-deterministic behaviour makes it pretty hard to predict overall system output in
fault situations on the other side [Sny04]. Especially in large-scale MAS, where the failure
rate grows with the system complexity due to the number of deployed agents and the
computation duration, the fault tolerance is a vital issue [Xua04]. These systems have to be
able to absorb the failure (detecting, isolating and recovering from it), while the rest of the
system proceeds with its regular functions.

Respecting its importance, a lot of work has been done and reported with regard to
fault handling in multi-agent systems. The inability of an agent to perform a particular action,
which was specified in its behaviour and triggered through an external event, can be defined
as its failure. Several types of failures have been specified in literature: crash failures when a
component stops producing output; omission failures when the faulty component can
eventually resume its output production; timing failures occur when the output is produced
outside the defined time slot; and arbitrary failures are related to arbitrary output values at
arbitrary times [Fac06]. If the system is able to handle a particular fault situation and
continues to operate without a significant loss of functionality, it is called fault tolerant
[Hag96]. The failure tolerance has been mostly spread and analysed in two related domains:
failure detections and failure recovery. The failure detection is an essential service that has to
be provided in a system in order to achieve satisfactory failure tolerance. Several approaches
that cope with the identification of failure states have been investigated [Dev00]. A typical
scenario for failure detection is the periodical exchange of “I am alive” messages between
individual hosts [Fac06]. The problem here is equivalent increase of the message flow that
can cause an overload of the communication service and influence the system performance, if
the system structure is not well organized. Bertier et al. presented a shared failure detection
service split into two layers: the basic layer that adapts the heartbeat emission interval to the
network conditions, and the adaptation layer that customizes the quality of service provided
by the first one according to application needs [Ber03]. Hagg used another approach by
applying external agents (sentinels), which observe the inter-agent communication. They can

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

81

detect inconsistencies in the agents’ behaviors by monitoring their activities as well as their
internal state. Some items (beliefs) from the world model of agents, which are related to them,
are directly copied to the world model of the sentinel. Other parts of the model can be built by
monitoring the agent communication and by direct interaction (asking). Sentinels can also use
timers to identify non-functional agents (or a faulty communication link) [Hag96]. A similar
approach is reported by Snyder and Tomlinson who are using sentinel-based unreliable fault
detectors for failure identification [Sny04]. The social diagnosis approach, where agents are
comparing their own states with peers in particular team-mates to detect possible failures, is
presented by Kaminka and Tambe [Kam98].

Failure recovery can be defined as the application of particular techniques for handling
identified failures. A replication mechanism is often used for failure recovery [Fac06, Gue04].
It involves the replicated agents that have several copies of their behaviours and states on
different locations. Once the original agent failed, its replica can overtake its place in the
system. Mellouli presented a methodology based on this mechanism, which assists designers
in the development process of fault-tolerant systems [Mel05]. However, the shortcoming here
is a weak software redundancy since the identical software subsystems will fail in identical
ways [Huh02]. In the previously presented sentinel approach the failure recovery is done by
sentinel agents, which are choosing alternative problem solving methods to recover an agent
from a failure state [Hag96]. Nevertheless, the architectural structure, where sentinels can
fully inspect and influence other agents, does not satisfy the assumptions of openness and
agent autonomy [Pla08]. On the other hand, Kumar and Cohen presented a fault tolerant
brokered architecture, where the teamwork is used to recover a multi-agent system from
broker failures [Kum00]. However, it seems that the system is more focused on the broker
failure tolerance and less on those of individual agents, requiring extra computing for the
management of brokerage layers [Kha05].

Having a multi-agent architecture, which is based on agents that encapsulate particular
functions of manufacturing systems and only have software representation on one side as well
as agents that supervise specific hardware components within manufacturing systems on the
other side, we present a hybrid failure tolerance approach that combines the heartbeat
mechanism for failure detection and the supervisor agent approach for system failure
absorption and recovery. In the rest of this chapter, we will describe specifications and
differences of failures related to the agent’s representation type as well as the failure tolerance
procedure linked to software or hardware agents respectively. At the end of the chapter we
will present implemented system recovery scenario and discus achieved performances. Due to
its simplicity, we will use the crash type of failures as case study.

5.2 Failure Types

Multi-agent systems can be seen as a community of autonomous, intelligent

entities/agents, where each agent has to cooperate and coordinate its activities with other

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

82

agents in order to achieve own and respectively the system goal as well. Being mostly applied
in a dynamic environment where the permanent changes are the only constant, agent has to be
able to identify these changes. An agent can receive information from the environment by
sensing it (e.g. sensors) or through communication (e.g. messages) with other agents. In order
to react appropriately on it, an agent has to be able to “understand” this information.
Consequently, in the case of an exceptional event (e.g. failure) an agent has to be able to
interpret it. Moreover, an internal representation (e.g. knowledge) is required as reference for
agents to evaluate incoming events and to be able to distinguish the exceptional from ‘normal’
ones [Pla08].

Having its surrounding represented in an ontology, an knowledge-based agent is able
to reason about the concept and appropriately respond on the received information. It is
capable to discover its own or even failure from other agents if required. Moreover, its actions
can be saved in the knowledge base, which copy could be placed and permanently updated on
the “safe” location. In the case of the identified agent failure, the new agent with the same
behaviours and copied knowledge from the old one can be relaunched in order to reach the
predefined goals. Differences to the replica approach are that here are copied only the data
and not an agent and that there is no divestiture on critical and non-critical agents since every
agent has particular meaning to the system. We successfully tested this scenario, but since this
was not the main focus of our approach it will be not discussed further.

As presented in the third chapter, our architecture is based on the two types of agents:
physical and functional ones. Receptively, MAS based on different agents types result in
diverse failure types and related failure tolerance procedures as well. Considering the
definition of Hiller, a system failure is a result of a system state error, which again is caused
by a specific fault [Hil98]. It is also important to mention that not every fault leads necessarily
to a failure. Nevertheless, each particular failure, which can potentially influence the system
in a bad way (i.e. by minimizing its performance), has to be detected and possibly absorbed.
We will make a brief look into possible failure types of MAS, which highly depend on the
nature of the application. In process automation the following three viewpoints could be
identified: physical component failures, software entity failures, and system disturbances.
Physical component failures include the complete breakdown of particular resources or their
temporary failure (e.g. blockade of an intersection, overloaded conveyor, etc.). Software
entity failures include all types of failures related to agents in MAS. Mellouli distinguished
agent failures regarding the agent’s ability to communicate [Mel05]:
The communication with the agent is down but:

• The agent can perform all of its tasks,
• The agent can only perform some of its tasks,
• The agent cannot perform any of its tasks,

Or, the communication with the agent is up but:
• The agent can only perform some of its tasks
• The agent cannot perform any of its tasks

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

83

All of the mentioned failures of agents are critical, because MAS are vitally depending on the
agents’ capability to communicate. The system disturbances include exceptions like rush
orders, quantity and mix variations, or incorrect deliveries, which should be considered in the
system concept. A failure tolerant system should be able to absorb all these failures mentioned
above. However, since the system disturbances could be generally handled with a well
designed architecture and defined related agent behaviours, we will focus in this study on
physical component and software entity/agent failures, which are mostly unpredictable and
evolve dynamically. Besides, our attention will be pointed out to failure tolerance in case of
the complete breakdown of particular physical components or failures when agents cannot
perform any of their tasks.

5.3 The Failure Handling Concept

Figure 5.1 shows the different types of agents. One the left side we have agents that

supervise particular resources (e.g. conveyors or robots). These agents are linked with the
LLC based on IEC 61499,
which is used to define and
program a LLC application that
controls the physical system,
acquires the information from
sensors and actuators, and
enables the agent level to
perceive the environment
through it. On the right side we
have strictly functional agents
without reference to a special
resource of the system (e.g.
contact-, supply-, or order-
agent – as explained in the previous section). As said before, we distinguish physical
component failures (Failure Type LLF, Low-Level-Failure) and software failures (Failure
Type HLF, High-Level-Failure). The failure type LLF represents failures of the hardware or
within the associated low-level control. Such failures could be:

(a) the breakdown of conveyor belts, which means within the actual hardware, or
(b) a failure in the controlling function block based application.

In case (a) the LLC is able to recognize the failure of the hardware via sensors and can
inform the agent through specially implemented statusChannels between LLC and HLC
(defined for the exchange of status messages). As a result, the agent reacts in an appropriate
way, based on its predefined failure rules [Mer09]. In case (b) the hardware is potentially
uncontrolled and the agent cannot get any error message from the LLC. However, due to the
implemented heartbeat between the LLC and HLC, which could be compared with a

Network

Rules

Controller

LLC HLC

IEC 61499

JADE

Rules

HB HLC

JADE
HB

Rules

HB HLC

JADE

Failure Type LLF

Failure Type HLF

Method 2

Method 3

Method 1

Network

Host

Platform

Agent

HB

Machine Agent
(Robots, Conveyor,…)

Supervising Agent
(Contact-, Order-, Supply-Agent)

Personal Computer Personal Computer

Figure 5.1: Architecture and related failure types

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

84

watchdog (that is broken in this particular case), the HLC of the agent recognizes the failure
of the hardware controlling functions and is also able to react on it. The existence of the
statusChannel is of vital importance since it enables the mutual and periodical supervision
between LLC and HLC. If one part is not responding within a predefined time, the other part
starts failure handling procedures. Hence, the agents’ reaction procedure is nearly the same as
in (a), because the agents only recognize physical component failures and start failure rules.

The failure type HLF targets unexpected failures of software agents. In this case an
agent itself is not able to perform any of its tasks. Generally, this failure detection is done with
a heartbeat (HB) mechanism, where two agents periodically exchange messages. In large and
complex multi agent systems this could lead to a huge amount of exchanged messages, which
could affect the system in a negative way and further lead to a weak performance. A way to
keep this message exchange in a low amount is to use this form of heartbeat mechanism only
for associated agents. Therefore we distinguish between two types of agents based on their
types of failures:

(c) a failure of HW-controlling agents, and
(d) a failure of functional agents.

The HW-controlling agents use an internal heartbeat to monitor a failure in case (c),
implemented between LLC and HLC. Hence, the LLC-part of the agent, which is running in
IEC61499, is now able to identify the failure within the JADE-part of the agent via this
heartbeat. It starts a procedure, which informs the Agent Management Service (AMS) of the
platform, to restart the HW-controlling agent completely. This is ensured with a backward-
recovery, where the agent’s actual knowledge base is used to get all necessary information,
like name, address, or goals of the agent. Therefore, firstly the erroneous agent will be killed
and removed from the platform and then a new agent with the same representation will be
started. In this case the agent’s knowledge base, which covers its actual internal
representation, is uploaded from the system memory or agent backup files.

On the other side, functional agents don’t have the possibility of such an internal
watchdog, because there is only one SW-Module (JADE). Therefore these agents use the
common heartbeat mechanism. This is done by periodically sending messages through the
JADE runtime. In case of the presented system, this message exchange is done between the
CA and the OA and SA for each received customer order.

5.4 Implementation

a) Heartbeat-Mechanism
At the beginning we will focus on the heartbeat mechanism in general. Normally a

heartbeat mechanism is based on the exchange of request and answer messages between two
entities. Figure 5.2 presents the heartbeat between two agents. THB is the period of each
heartbeat. The period should be longer than the expected heartbeat time tHB, which consists of
the reaction time tR and the times necessary to transmit both messages, the request and their

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

85

answer, over the network. The reaction time is as long as an agent needs to receive and
process the message including the time to prepare an answer message.

Figure 5.2: Heartbeat mechanisms

When an agent starts the heartbeat mechanism, it is awaiting the answer in a given
time (in our case THB). When a correct answer message is received in the specified time, the
agent knows that the other one is alive. The picture shows, that if an agent receives a request,
it replies, awaiting again the request message within THB time. That way, it is possible for two
agents to control each other.

b) Heartbeat-Organization

If one agent sends no answer in the given time, the other agent realizes this missing
message as a failure and informs the platform managing agent about the failed agent. This
offers many possibilities to implement a heartbeat mechanism in multi agent systems, as
shown in Figure 5.3. All the proposed solutions, as presented in Figure 5.3, focus on the
already introduced machine-agents, while the
functional agents always use a peer-to-peer
mechanism for realizing the heartbeat. One possible
solution – shown as broker architecture – is a
centralized version with one supervising agent
(CA), which is the heartbeat-partner for every other
MA in the system. The major drawback is that due
to the centralized aspect this agent could become a
bottleneck, which leads to unreal failures caused by
timing problems. A second aspect is the significant
amount of messages needed to realize such a
heartbeat mechanism [Kop09]. The second solution
is to create peer-agents, which are only responsible
for each other. In that case, one agent (e.g. CA) is
necessary to manage the peers at startup and introduce agents before a heartbeat messages are
exchanged. The bottleneck is reduced to the startup-phase of the agents. Our proposed
solution is a hybrid architecture, where only the functional agents perform a peer-to-peer like
heartbeat mechanism by sending messages over the network. The machine agents perform the

C A O A2 SA2O A1SA1

M A1 M A2 M A3 M A4

C A O A2 SA2O A1SA1

M A1 M A2 M A3 M A4

C A O A2 SA2O A1SA1

M A1 M A2 M A3 M A4

LLLLLLLL

B
ro

ke
r

P
ee

r-
to

-P
ee

r
H

yb
rid

Functiona l
Agents

Functiona l
Agents

Functiona l
Agents

M achine
Agents

M achine
Agents

M achine
Agents

Figure 5.3: Heartbeat scenarios

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

86

heartbeat mechanism without sending messages over the network. They use an internal
heartbeat between their HLC and LLC. Nevertheless, in the case of the complete breakdown
of both (HLC and LLC), this failure could only be detected from its surrounding agents while
they interact with it. This could be solved through a time-constrained message interaction or
through special sensors and will be a part of our future research being mentioned here only to
meet the principle of completeness. We focus more on the possibilities of a hybrid heartbeat
using a heartbeat communication between LLC and HLC.

c) Heartbeat Communication between LLC and HLC

The sanity of both parts of MAs is detected by heartbeat messages exchanged between
the two layers. In our implementation the message content is separated from the message
transfer channel. Since both layers are implemented in different runtime environments, the
initial realization is done via local network communication, as already described in [Kop08a]
[Heg08]. The bidirectional bStatusChannel has the task to provide status information of
the mechanical component and the real-time capable LLC-layer to the HLC. Since the
payload on this channel is minimal and recent information on the component-status is
essential for the HLC, this channel is used to exchange the heartbeat messages. The heartbeat
functionality of the LLC is realized by a small function block (FB) network containing 3 FBs
as shown in Figure 5.4a. The composite function block (CFB) “bChannelStatus” is actually
responsible for receiving and sending the
heartbeat from and to the HLC. It
contains the necessary service interface
function blocks (SIFBs) for the
communication within the controller.
SIFBs are designed to provide the
required interfaces concerning
communication with remote resources as
well as access to hardware elements
(such as physical I/O ports of a
controller) of a device. The CFB
“LLC_HeartBeat” contains a network of
3 FBs (see Figure 5.4b) that are
responsible for triggering and observing
the heartbeat. After initialization of the
LLC, the heartbeat generation is started by the START-event received by the “E_CYCLE”-
FB. This block now triggers “bChannelStatus” to send a heartbeat to the HLC every 5
seconds. Simultaneously a flip-flop is set as a confirmation for sending the heartbeat (FB
“E_SR”). This flip-flop is reset as soon as the HLC returns the heartbeat. A response of the
HLC heartbeat within 5 seconds indicates that the HLC is still functioning. However, if the
heartbeat is not returned by the HLC within 5 seconds, an error-event is triggered and sent to

Figure 5.4: Low-Level heartbeat
functionality

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

87

the CFB “HLC_ErrorHandling”. In case of a detected error, “HLC_ErrorHandling” stops the
heartbeat and is able to activate recovery measurements. For instance it can send a message
via the network to the remote management agent (RMA) with the content that the HLC is no
longer reachable. Or it may contain SIFBs with functionalities concerning the operating
system (OS) of the controller. In this case it may trigger a restart of the HLC agent platform or
even a complete restart of the controller. As soon as the failure recovery measurements are
executed, the heartbeat is restarted [Kop09].

The failure recovery procedure, when the HLC doesn’t receive a heartbeat from the
LLC or receive the message from it that the related hardware component is out of order, will
be presented in the remaining part of the chapter. We tested the behaviors and reconfiguration
abilities of the presented knowledge-intensive multi-agent architecture using simple transport
tasks and introducing some internal disturbances (failure of particular components e.g.
conveyors).

5.5 Reconfiguration Abilities of the KASA

The route planning and best path algorithms are highly researched topics in computer

science for many years [Tom05]. Based on Dijkstra’s algorithm, we implemented a simple,
but very efficient Shortest Path Algorithm (SPA), which is used by diverter agents for
calculating a routing table and by pallet agents for the distance calculation during the
negotiation process regarding the transport allocation [Mer08]. Furthermore, we introduced a
Change-Direction-Algorithm (CDA) to test the failure recovery characteristic of our
architecture. It handles a breakdown of conveyors which might lead to unreachable
destinations (machines). The CDA is able to find the best stable configuration of the transport
system by changing the directions of specific conveyors [Kop08b]. The CDA, like the SPA,
starts from the ontology representation of the proper functioning system and presents its
structure as a matrix. The matrix is then filled with all intersections and adjacent conveyors.
After that, the occurred failure is introduced in the matrix and the CDA starts to change
virtually the direction of all potential-solution conveyors and checks the system functionality.
The new solutions will be compared with previous ones and saved, if marked as better.
However, the new solutions could also effect and cause the direction changes of some
adjacent conveyors in the system. The CDA is therefore programmed as a recursive algorithm
in order to being able to evaluate such states as well. The system functionality in a dynamic
environment is demonstrated by introduction of failures of particular resources. Correlated to
our concept, the system environment is represented within the ontology. The instances are
used to represent locations whose attributes and relations provide details of locations
reachable from it, as suggested in [Cor05]. The path is being defined as a set of segments
(conveyors) between the current position and the destination. The constraints of system
components (e.g., conveyor overloaded – busy) are also incorporated in the ontology and
regulated trough appropriate agents’ behaviors. A representative part of the pallet transfer

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

88

system is shown in Figure 5.5. The presented section consists of Diverters (D1, D2), Junction
(J1, J2), Index Stations (I1, I2, I3) and Conveyors (C1, C2, etc.) between them. The main
objective of the system is to transport pallets using the shortest way to their target
destinations. In the presented example the destination is I1. In the case of a proper system
function, the shortest path is via the intersection D2 and the conveyor C1. However, in case of
a system failure, for example the break down of the conveyor C1, the pallet will not be able to
reach its destination in the usual way. To handle this, the system has to be able to react on the
new state. The ability of the system to change from its current configuration to another
configuration—possibly without being taken off-line—is of highest importance. In case of
presented system failure the system reacts as follows:

1. The hardware of the system detects the failure using sensors. The low-level control
informs the corresponding MA through the low-level communication interface.

2. Based on the given information the agent updates its knowledge base and sends the
“INFORM” ACL message to all related agents (diverter and neighbor agents) about
the detected failure. Each diverter has to recalculate and update its routing table.

3. Furthermore, the agent also sends a “FAILURE” message to the CA, which is
equipped with the CDA algorithm, in order to check the system functionality.

4. The CA starts the CDA and compares its results with the actual system state.
5. In the case that the CDA recommends a new configuration, the CA updates its

ontology, sends “REQUEST” message to related conveyor agents to change
directions, and “INFORM” messages to diverters, updating the system representation.

6. Each diverter will recalculate and update its routing table. Having accurate
information and an up-to-date world model of the system is of primary importance for
diverters. Due to their role to receive pallets coming from input conveyors and—
according to their destinations—to route them to the appropriate output conveyors.

Figure 5.5: Simplified Scheme of the Transport System and MAS
Framework

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

89

The reaction of the system on the failure of the index station I2 will follow the same
procedure. However the CDA notices that the index station I3 is not reachable any more and
suggest the direction change of the conveyor C5.

5.5.1 Simulation Approach

In order to test the effectiveness of the presented approach we have used the MAST,
which is able to provide agent-based simulation support for our empirical study and the TMS
is used for automatically running predefined sets of test cases described in XML files. A total
set of 52 test cases were generated from the scheduling strategies as input to the TMS. Each
test case has a workload of 7200 customer orders and applies FCFS (First Come, First Served)
workflow scheduling strategy. A customer order consists of a particular product type to be
built and a randomly generated due date that has to be respected. We defined three product
types (simple, medium or complex) which differ in the type and number of machine
operations needed to assemble the final product. The type of machine operation defines the
related machine that has to be visited to accomplish the operation. To finish a particular
product all related machine operations have to be completed and the product has to be
delivered to the storage. The shift time for a test case was set to 24 hours in order to ensure
that randomly selected customer orders could not easily be finished in the study context
without an effective use of all available resources (same as in the chapter 4). In order to test
the influence of the pallet jam, the performances of the MAS are also tested when different
numbers of pallets have been available
(5, 10, 15 or 20) for each test case
respectively. Moreover, being aware
that the failure duration as well as the
position of the failed conveyor for the
overall system could play a significant
role on system output, we considered
also these during the test case
definition. We classified the risk of a
failing conveyor in 4 failure classes:

a) test case without conveyor
failure;

b) test cases, when one conveyor failed (C14) but all machines are reachable over
redundant conveyor (C15) as presented in Figure 5.6;

c) test cases, when two conveyors failed (C14 and C15) but the CDA is started and while
conveyor C16 changes its directions the right side of the system becomes reachable
again,

d) test cases, when two conveyors failed and one part of system is not available for a
particular amount of time.

St
or

ag
e

Default Direction

Pallet

M
ac

hi
ne

 1
M

ac
hi

ne
 2

M
ac

hi
ne

 4
M

ac
hi

ne
 5

M
ac

hi
ne

 3

C14

C15

C16

C17

Figure 5.6: Test bed Layout

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

90

Test cases with failures are further defined considering different duration of particular failures
(15 minutes, 1 hour, 2.5 or 5 hours) respectively. Each failure type is introduced after 5 hours
of uninterrupted work.

5.5.2 Simulation Results and Discussion

We use the number of finished products as reliable measure for efficiency of the
system. The dependence of the system output on the number of pallets, failure type as well as
failure duration is presented in Figure 5.7 (refer to Table 5.1 for more details). The diagram
shows that the number of finished products proportionaly increases with the number of used
pallets. Even when the conveyor C14 fails for a short period of time, due to the existence of
the redundant conveyor C15
that takes over its duties, this
does not significantly
influence the system
performance. Nevertheless,
this is the case when the
number of used pallets is
relatively low. Increasing the
number of pallets over 15, the
conveyor C15 becomes a
bottleneck causing pallet jam
and reducing the transport
flow. This is especially the
case when 20 pallets are
used. Although, more pallets
have been introduced, due to
overload the system showed
worse performance than
when 15 pallets are used. In
the case, when two conveyors
(C14 and C15) fail at once
and the right side of the
transport system becomes
unreachable, our system
starts to reconfigure itself and
automatically switches the
direction of the conveyor C16
in order to function properly.

Figure 5.7: Number of finished products within a test case

 Number of Pallets

 Failure Classes

Test case Failure duration

5 10 15 20

a) No Failure a 1011 1965 2797 3440
b1 15 minutes 1010 1963 2792 3410
b2 1 hour 1008 1957 2785 3296
b3 2.5 hours 1003 1941 2768 3078

b) Redundant
Conveyor
Failure
 b4 5 hours 998 1915 2737 2724

c1 15 minutes 1009 1961 2786 3398
c2 1 hour 1005 1954 2778 3269
c3 2.5 hours 1002 1936 2761 2998

c) CDA

 c4 5 hours 996 1910 2723 2629

d1 15 minutes 986 1916 2726 3342
d2 1 hour 910 1768 2517 3044
d3 2.5 hours 760 1476 2433 2945

d) Part of
system
unreachable
 d4 5 hours 513 996 1419 1750

Table 5.1: Number of finished products considering the
Number of Pallets and Type of Failure

CHAPTER 5. FAILURE TOLERANCE IN THE KASA

91

Nevertheless, this causes even more pallet jam than in the previous case (b), while C17
cannot be used as redundant conveyor now, since C17 and C16 have to overtake the whole
transport load from one side to the other of the transportation system. The system
performance increases also here with the number of used pallets until the optimal number of
pallets (for the presented Test bed layout this number is 15) is being reached. However, due to
the traffic jam the system produced 2.6% products less operating within this state for 5
consecutive hours. Consequently, when 20 pallets are used the number of finished products is
decreased up to 23%, in comparison to the state when everything is functioning well.
Nevertheless, the application of the presented CDA algorithm significantly improves the
system efficiency of MAS when compared to the performance of conventional systems, which
are presented in case d), and this particularly in the cases when the duration of failure is
significantly long. Being able to automatically reconfigure the system layout, the presented
MAS architecture outperformed conventional systems by producing 11.8% products more
when optimal number of pallets is used and when the duration of the failure is 2.5 hours or
even by 46.6% products more when the conventional system has to wait 5 hours on the
external intervention. We are aware of the facts that diverse Test bed configurations, the time
of the failure occurrence, combination of different failure types as well as the order of their
appearance could result in different system performance from the presented and this is the
reason we will consider these factors in our future work.

5.6 Summary

A specific failure scenario is applied to show the reconfigurative behavior of the

system. By reconfiguring the behaviors of its physical components the system is able to
ensure its global functionality even in the case of several component failures. The simulation
results indicate that our approach is well suited for building complex systems to enhance the
system efficiency. Moreover, even though the failures are induced in this implementation only
in the KASA simulation environment, the system’s ability of selfreconfigurability is existent
also for the real physical system. Only the graphical simulation would have to be substituted
by the physical equipment resulting in minor changes to the LLC but without having to
change the structure and reasoning of the HLC.

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

92

6. Simulation of the KASA Environment

“He that would perfect his work
must first sharpen his tools.”

Kung Fu-tzu Confucius

6.1 Introduction

Simulation is a powerful method for performance evaluation and quality improvement
of designed control solutions. Combining the agent based modeling and simulation, it is
possible to tune the system behavior and choose an appropriate design before actually
implementing it in the real system [Vrb05]. The areas in which such approaches are already in
use, for instance testing the manufacturing scheduling, simulation of the packing cell,
simulation operations in a rough mill, simulation of the manufacturing supply chain
operations, etc., are previously presented in the second chapter. However, the manufacturing
systems emerge and evolve very fast and exchange of accurate information and knowledge
between entities within these systems is of highest importance, since the decisions made have
to be based on exact information. The main limitation of the approaches mentioned above is
the lacks of solutions for covering such dynamic information exchange.

The importance of ontologies for development of intelligent knowledge based systems
could be seen trough support of interaction mechanisms, insurance of interoperability between
agents, re-use of knowledge and simplification of the solution development [Nec91, Hob87].
The technical challenges and benefits of using ontology-driven approach for simulation
modeling, e.g., such as role in conceptual model design phase or role in simulation integration
and simulation composability, have been described and presented by Miller and Baramidze as
well as Benjamin et al.. However, these advantages are still not really explored by modeling
and simulation communities [Mil05, Ben06].

6.2 Tools

We used MAS as a simulation model to build scalable and flexible manufacturing
system. MAS is recognized as a flexible and reusable modeling framework which enables
rapid development of customized decision solutions for manufacturing [She00]. As said
before, our simulation model employs the ontology concept represented in the OWL, which
serves as a standardized mean for describing ontologies. We use Protégé-2000 [Stanf07] as an
integrated software tool to develop both the ontology and the knowledge base. Protégé-2000
is an open-source ontology and knowledge base editor designed by Stanford Medical
Informatics at the Stanford University of Medicine. It is implemented in the Java
programming language and can manage ontologies in XML, XML Schema, RDF(S),

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

93

DAML+OIL and OWL. Protégé-2000
provides a plug-and-play environment and
can easily be extended. Ontologies in
Protégé-2000 can be handled through a
friendly graphical user interface. We use
Protégé ontology editor to design the
ontology, create related instances of
classes, and define attribute values (Figure
6.1).

The reasoning is implemented
using the Jess expert system shell
[Sandi07]. Java Expert System Shell
(JESS) is a small and very fast rule engine
developed by Ernest Friedman-Hill. It is
based on CLIPS [CLI09] but written
entirely in Java. JESS is a tool used for building the rule-based expert systems, which can be
seen as a set of rules that can be repeatedly applied to a collection of facts about the world. In
this context, a fact is identified as a construct that defines a piece of information that is known
to be true. Rules are simple statements that consist of an if-part and a then-part. Jess applies a
special Rete algorithm to match the rules to the facts. When the particular input information,
which is coming from the environment, matches the facts in the if-part of the rule, particular
actions, which are defined in the then-part, are executed. However, this can deduce new facts
that could be a reason for firing of some new rules. Compared to the imperative one, the
declarative knowledge is more reusable and modular, has better semantics and makes
detecting and correcting contradictory knowledge easier [Gun04].

We used a plug-in called JessTab to integrate Protégé with JESS [Eri03]. JessTab
integrates these two tools by mapping Protégé instances to Jess facts and enables the JESS
rules to fire when the appropriate conditions in the Protégé knowledge base are met. Using
this plug-in, JESS can directly manipulate the ontology and instances and infer new facts
deduced from them.

The presented multi-agent architecture is built using the Java Agent DEvelopment
Framework (JADE). The JADE platform is developed by the Telecom Italia Lab, in
compliance with the standards defined by FIPA (Foundation for Intelligent Physical Agents),
which is a non-profit organization involved at producing standards for the interoperation of
heterogeneous agents. JADE is written entirely in the Java language, which simplifies the
implementation of the presented multi-agent system with other tools mentioned above. The
JADE platform enables each agent to manage its own life cycle, register its services, search
for agents providing particular services, discover them and communicate with related agents.
The JADE architecture enables agent communication through message exchange using the
agent communication language (ACL) [Fou03] that is based on the speech act theory [Aus62].

Figure 6.1: Part of ontology (Machine Agent)

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

94

This agent platform can be also
distributed across multiple hosts,
where the inter-agent communication
is managed by exchanging ACL
Messages. Several JADE platforms
can be indirectly connected over the
DF Federation [Kop08f]. More
information on JADE can be found at
[JAD08]. The agents reasoning
capabilities are incorporated into the
agents using JESS. The integration of
Jess component into a JADE agent is
done by instructions written by
Cardoso [Car09]. For the debugging
and analysis of communication
between agents and correspondingly
for the manufacturing workflow
observation, we used a tool called the
Java Sniffer [Tic06]. The Java Sniffer
is a stand-alone Java-based agent-
communication visualization tool, developed by Rockwell Automation, Inc., which. can be
easily attached to running JADE system. It receives messages from all involved agents in the
system and presents it from different points of view (Figure 6.2). The Java Sniffer supports
the resolving of communication problems in system during development phase.

6.3 System Integration

In order to present the function of each software component of the system, we will
observe activities of a representative part of the Transport System (Figure 6.3) in the case of a
failure. It consists of diverters (D1 to D3), a junction (J1 and J2) and an index station (I1)
interconnected by conveyor belts. The shortest path for the palette to I1, when all system
components are functioning correctly, leads over D3 and J1. Considering that each diverter
has accurate world model based on which it can calculate the shortest path, the system is
going to route the pallet using this way. However, in case of a system failure, for example the
break down of the conveyor belt between diverter D3 and junction J1, the pallet will not be
able to reach the destination using this optimal way. To handle this exception, the system has
to be able to reconfigure itself — to change from its current configuration to another
configuration — without being taken off-line. For this particular case, the diverter D3, has to
be:

Figure 6.2: Java Sniffer: Negotiation between
Supply and Machine (Robot) agents

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

95

1 informed about the failure, and
2 able to maintain

the knowledge
about the system
and recalculate the
shortest path data
table based on this
new information.

The information about the
failure is sent to all
related system
components by CA,
which is informed from
corresponding MA that
supervises the broken
component. To enable
faster system reaction, this MA informs usually also neighbor agents, as described before in
section 5.5. All agents that receive this message should handle it in a similar way by
maintaining their own knowledge base according to the received message and re(-acting)
appropriate, when defined with rules. As a result the diverter D3 is able to reroute the pallet
over the newly calculated route D3-D1-D2-J1-I1, thus preventing that the palette is stuck at
junction J1 until the broken conveyor belt is replaced or repaired.

To face this, every agent has to be able to sense and understand its environment
(represented in the system-ontology), as well as to (re-)act on these inputs with a specific
behavior (e.g. inform others by sending messages). This representation, where every part of
the system is stored as an individual, is the fact base for the JESS engine. The JESS-engine
maps all the instances of the system-ontology and handles them as facts. Based on these facts,
the left hand sides of the agent’s rules, mentioned in the section before, will be evaluated thus
activating the actions on the right hand side or not. This rule based agent behavior for
handling the system evolution and for reaching the agents’ aims, which is coded in the JESS-
language, is one part of the agent behavior. The other part is the communication behavior
which is influenced by the multi-agent framework JADE. JADE provides the agent lifecycle
and the message transport service for sending ACL Messages. As any other class, each agent
is stored as an individual in the ontology and as a fact in the JESS-fact base. Together with the
JADE representation of the agent (JADE-Agent), this is the second representation of each
agent (JESS-Agent) and we have to take care, that changes in one representation impacts the
other in the same way [Car09]. To face this, we bind the JADE Agent to the JESS-Agent and
integrate the JESS behavior into the JADE behavior like presented in Figure 6.4. Through
this, the JESS-engine of the agent including the rule-based behavior is linked to the JADE
agent cyclic behavior. This behavior enables each agent to fire its rules according to their fact-

Figure 6.3: Simplified scheme of the Transport System

Multi-Agent Framework
(JADE)

Rule-based Behaviour
(Jess)

D1 D2 J2

D3 J1 I1

Palette

Agent
Onto-
logy

Agent
Onto-
logy

Rules
=>

Rules
=>

Inform CA

(3) Recalculate

Real System

Ontology
(Protégé)

I1

(2) Maintain
knowledge base

(2) Maintain
knowledge base

Detection

(1) Inform

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

96

base. As the communication between the agents continues, the fact bases of the agents are
changing permanently. Each agent has rules to handle incoming messages and modify their
ontologies.
In the case that a JESS-Agent has to send a message to other agents, the system works as
follows:

1 The content of the message will be derived from the ontology and a Jess-rule will store
it in an ACL-message template. This template is the interface between the ontology-
representation of the message and the message processed by JADE.

2 A special send-behavior enables the JADE-Agent to prepare the message for sending
through the distributed JADE runtime.

3 In this step the ACL-message will be sent from one Agent to another Agent,
independent from their location—either within one JADE-container, between two
containers in the same platform or between different JADE-platforms.

4 The message arrives in the message queue of the receiving JADE-Agent.
5 It is processed and stored in the receive-slot of the Jess-Agent. For the purpose of

allowing asynchronous receiving and processing of more than one message, the
receive slot is implemented in form of a multislot. Otherwise, as experienced, message
could get lost (deleted with other incoming messages).

6 After receiving a JADE-ACL-Message the JESS-Agent maps this message
automatically to the agent’s fact base, what causes that agent switches from the
blocked state into the jess-behaviour-state and is able to fire its rules according to
newly created facts. This behaviour is supported by the JADE function for receiving
messages and it is essential for the system, otherwise the agent wouldn’t have the facts
to fire on it.

The messages are being exchanged between agents all the time, since the system is constantly
changing its state and all system components have to have up-to-date information about its
current status.

Distributed JADE runtime

Agent-Rules

Agent Ontology

JADE
Agent1

JADE
Agent2

Jess
Agent1(1) Set

Information
(i) in ACL
Template

(2) Prepare
the message

to Agent2

Agent-Rules

Agent Ontology

Jess
Agent2

(4) Post the message
in the message queue

(5) Get the
messages and

process it

(3) Send the message

Figure 6.4: Message conversion between JADE framework and JESS-Agent

CHAPTER 6. SIMULATION OF THE KASA ENVIRONMENT

97

6.4 MAST Simulation

For the empirical studies of the system architecture performances presented in the 4th
and 5th chapters, we used MAST simulation and Test Management System, whose features
are in-depth described by Vrba et al and Merdan et al. respectively [Vrb08, Mer08d].
Considering the used JADE framework and similar architecture, we are further streaming the
integration of the KASA and MAST simulations. The fundamental steps, which are already
done in this direction, are presented in [Mer08e].

6.5 Summary

Simulation is a very effective way for testing different control architectures and
improving quality of designed solutions. In our case the simulation has been used as an
indispensable tool for tuning and validating the agents’ behaviour and knowledge. The most
important aspect of this agent-based simulation is the possibility that the agent-control
algorithms developed for the simulation model could be reused, in ideal case without any
modification, for the actual real-life control. Using MAST enabled us to imitate the
complexity of the real system in the simulation and to test different scheduling strategies
much faster then in the real testbed. Moreover, the relations between different manufacturing
parameters, such as throughput, tardiness, capacity, complexity of products assembled, could
be established much more effective, at lower costs, and – what should not be underestimated –
safer. We are able to confirm that the agent paradigm is suitable for building, modeling and
simulating complex manufacturing systems.

CHAPTER 7. CONCLUSION 98

7. Conclusion

The current manufacturing control systems respond weakly to the emerging challenges

caused by new technological developments and market demands. In order to stay competitive
in the dynamic global market these systems have to be able to effectively react to sudden
changes in customer demands, constant evolution of technology, and unpredictable events
such as failures and disruptions. However, currently applied centralized control approaches
are good in optimizing production but weak at responding to change, mainly because their
rigid hierarchical structure.

Intelligent agents offer a new distributed control approach that, using concepts of
autonomy and cooperation, leads to more flexible and robust production systems. Agents with
specialized expertise and high level of autonomy cooperate together to accomplish individual,
as well as system objectives. Although confirmed as a promising approach and deployed in a
number of different applications throughout the last few years (e.g. MAST, Production 2000+,
etc.) the widespread adoption of agent-based concepts by industry and governments is still
missing. As the main reasons identified, upon others, are the lack of awareness about the
agent technology potentials, missing trust in it as well as lack of standards, methodologies and
development tools that would simplify the integration of this technology in the manufacturing
domain. We further presented challenges that should be solved in order to accelerate the
adaptation of agent-based technologies. Achieving interoperability in the heterogeneous
manufacturing environment, the transformation of received raw data into knowledge, the
linkage of the agent-based system to real-time information and its integration with the FB-
technology as well as support of principles such as generality, reusability and long-term usage
are defined as main challenges whose elucidation could further lead to the higher
implementation rate and raise confidence in this technology respectively.

To face requirements mentioned above we developed knowledge intensive multi-agent
architecture applied in demanding assembly domain, where each agent has its own “world
model” of the environment. The ontology is used to formalise agent knowledge and to
describe the concepts and relationships that can exist within a multi-agent system.
Incorporating semantics into the data, an ontology specifies the meaning of terms which are
used during communication enabling knowledge interoperations between agents. Ontologies
are also used to record actions and events as an explicit knowledge so that they can be
analyzed afterwards. In the frame of this thesis we developed persistent ontology able to
support knowledge exchange during the entire manufacturing process, from the ordering over
production until the final shipment to a customer.

As a basis for simulated architecture, we use the “Test bed for Distributed Holonic
Control” at the Institute for Automation and Control, Vienna University of Technology.
Considering the Testbed and defined layered manufacturing structure we created related agent
classes. The established multi-agent architecture, focused on clear decentralization of the
manufacturing system, was able to handle complexity of the used Testbed layouts during the

CHAPTER 7. CONCLUSION 99

simulation tests reaching good system performances and increasing its agility compared to the
present state of the art systems. This was especially notable in the planning process, where
upon others, the ontological representation of the product model enabled agents to
autonomously reason about the used concepts, linking automatically between product models,
production processes and production equipments. Moreover, the ontology-based system
model facilitated coordination between agents making system knowledge both machine-
interpretable and shareable at the same time. Besides, the implemented interface between
agent and low-level as well as its ontological representation provides agent with ability to
“understand” the exchanged messages with low-level control and correspondingly the
acquired information from sensors and actuators.

Considering the scheduling of production resources as one of the key features in the
current competitive and dynamic manufacturing environment, we have done extensive tests
applying our architecture and proving its effectives and efficiency. In order to create flexible
scheduling able to cope with conflicts derived from the resources sharing among the
production orders, we combined multi-agent approach with negotiation mechanisms for task
allocation, where additionally each resource agent performs local scheduling using
dispatching rules. The simulation study proved that the system was able to handle the
scheduling and production process on its own. The measured system performance was
particularly improved when we augmented the scheduling calculations to explicitly consider
the transportation durations between the machines. We also measured system robustness by
systematically comparing the overall system performance (e.g., number of finished products)
when using one of four re-scheduling strategies in case of machine disturbances/failures. In
the empirical evaluation the Complete Rerouting re-scheduling strategy outperforms all other
strategies significantly.

Since the concerns regarding the stability and survivability of multi-agent system,
especially in unpredictable environments, are mentioned as one of the key reasons for weak
implementation rate, in the fifth section we tested system failure tolerance, i.e., its ability to
detect, isolate and recover from failure. We presented our failure tolerance approach that
combines the heartbeat mechanism for failure detection and the supervisor agent approach for
system failure absorption and recovery. The simulation results confirmed also system
reconfiguration abilities and indicate that our approach is well suited for building complex
systems to enhance the system efficiency.

Bearing in mind the advantages of presented multi-agent architecture, we are aware
the fact that this technology has to mature through real industrial applications, to establish
multi-agent system’s ability to autonomously and faultlessly govern the entire manufacturing
systems. On the one side we think that the agents’ ability to maintain an accurate internal
representation of pertinent information about the environment in which it operates has to be
further developed. However, this could significantly improve its self-monitoring and self-
control capabilities. In this regard it is of vital importance to define the constraints that the
subsystems (e.g., sensors, actuators and operator control units) place on symbolic world

CHAPTER 7. CONCLUSION 100

model representations as well as to specify the means to measure the quality of ontological
representation for autonomous agents.

On the other side, the capability of enterprises to form network organizations and
cooperate with partners is an important factor for competitive market position. The
information and knowledge exchange between partners play a critical role for the success of
such networks. It is of highest importance to have an optimized information flow to find the
appropriate knowledge source in the desired quality and in adequate time. In current
networked organizations it is usually not transparent to the partners, which knowledge is
available at which partner's site. Our proposal is to use semantic technology together with
software agents in order to improve knowledge capturing, knowledge reuse and knowledge
transfer in such networks. The development of the multi-agent architecture able to govern and
support such networks is one of the biggest challenges. Moreover, considering the extremely
heterogeneous nature of such environments the more serious work has to be done in the field
of an ontology engineering e.g. merging and mapping.

Finally, as successors of the idea that the best multi-agent system is the implemented
one, we will continue further to stream its real life application. We are currently developing
the emulation for each particular component of the transport system and setting the basic
preconditions (such as porting the selected software platform—JADE and JESS—to the
embedded target platform) for the deployment of the developed MAS into the real system, the
“Test bed for Distributed Control”, at ACIN’s Odo Struger Lab.

BIBLIOGRAPHY

101

Bibliography

[Ald04] Aldea A., Bañares-Alcántara R., Jiménez L., Moreno A., Martínez J., and Riaño D.,

“The Scope of Application of Multi-Agent Systems in the Process Industry: Three Case
Studies” Expert Systems with Applications Journal, January 2004, pp 39-47.

[AlS07] Al-Safi, Y. and V. Vyatkin (2007). An Ontology-Based Reconfiguration Agent for
Intelligent Mechatronic Systems. In: HoloMAS 2007, LNAI 4659, pp. 114-126. Springer
Berlin-Heidelberg.

[Aus62] Austin J. L.. “How to do things with words”. Clarendon Press, Oxford, UK, 1962.
[Aze00] Azevedo A.L. and Sousa J.P. “A component-based approach to support order

planning in a distributed manufactusring enterprise“Journal of Materials Processing
Technology 107 (2000) 431±438

[Bab05] Babiceanu R. F., Chen F. F., and Sturges R. H., "Real-time holonic scheduling of
material handling operations in a dynamic manufacturing environment," Robotics and
Computer-Integrated Manufacturing, vol. 21, pp. 328-337, 2005.

[Bab06] Babiceanu, R. F., & Chen, F. F. (2006). Development and applications of holonic
manufacturing systems: A survey. Journal of Intelligent Manufacturing, 17, 111–131.

[Bak91] Baker D. A., Factory Control in Multi-Agent Heterarcies, Journal of Manufacturing
Systems May 8, 1998

[Bar04] Barata de Oliveira, J.A. (2004), "Coalition based approach for shop floor agility – a
multi-agent approach", Universidade Nova de Lisboa, Lisboa, PhD thesis,

[Bar05] Barata, J.: Coalition Based Approach for Shop Floor Agility – A Multiagent
approach. Edições Orion, Amadora – Lisboa (2005)

[Bas05] Bastos R., Oliveira F. and Oliveira J., Autonomic computing approach for resource
allocation, Expert Systems with Applications 28 Elsevier Ltd, (2005), 9-19.

[Bed91] Bedworth, D. D., Henderson M. R., and Wolfe P. M.. Computer- Integrated Design
and Manufacturing. New York: McGraw-Hill, Inc., 1991

[Bel07] Bellifemine F., Caire G. and Greenwood D., Developing Multi-agent Systems with
JADE, WILEY, April 2007

[Ben06] Benjamin P., Patki M. and Mayer R.: Using ontologies for simulation modeling.
Winter Simulation Conference 2006: 1151-1159

[Ber99] Bernard SM, Wang XK, Liu CY (1999) Expert, neural and fuzzy systems in process
planning. Tsinghua Sci Technol No.1.

[Ber01] Berners-Lee T., Hendler J., and Lassila O., (2001). The semantic web: a new form of
web content that is meaningful to computers will unleash a revolution of new possibilities.
Scientific american, 2001, vol. 5, n°. 284. p. 28-31.

[Ber03] Bertier, M.; Marin, O.; Sens, P., "Performance analysis of a hierarchical failure
detector" Dependable Systems and Networks, 2003. Proceedings. 2003 International
Conference on 22--25 June 2003 Page(s):635—644

[Bla91] Black, J T. The Design of the Factory with a Future. New York: McGraw-Hill,1991.
[Bla01] Blazewick, J.: Scheduling computer and manufacturing processes. Springer (2001)
[Boc04] Boccalatte, A., Gozzi, A., Paolucci, M., Queirolo, V., & Tamoglia, M. (2004). A

multi-agent system for dynamic just-in-time manufacturing production scheduling. IEEE
International Conference on Systems,Man and Cybernetics, 6, 5548–5553.

[Bon97] Bongaerts, L., Van Brussel, H., Valckenaers, P. and Peeters, P. (1997) Reactive
scheduling in holonic manufacturing systems: architecture, dynamic model and
cooperation strategy. In: Proceedings of the ASI-97 of NOE on ICIMS pp. 1-8, Budapest.

[Boo05] Boothroyd, G. “Assembly Automation and Product Design, 2nd Edition”, Taylor and
Francis, Boca Raton, Florida, 2005.

BIBLIOGRAPHY

102

[Bos99] Bose, U. (1999) ‘A cooperative problem solving framework for computer-aided
process planning’,. Proceedings of the 32nd Hawaii International Conference on System
Sciences - 1999

[Bra04] Brachman R. and Levesque H., “Knowledge Representation and Reasoning”
Elsevier/Morgan Kaufmann 2004

[Bray00] Bray, T., et al (eds.), “Extensible Markup Language (XML) 1.0 (Second Edition)”,
W3C Recommendation, http://www.w3.org/TR/2000/REC-xml-20001006, 2000.

[Bre00] Brennan R.W. and O W., “A simulation test-bed to evaluate multi-agent control of
manufacturing systems,” in Proc. Winter Simulation Conference 2000, J.A. Joines, R.R.
Barton, K. Kang, and P.A. Fishwick, Eds., Orlando, Florida, USA, 2000, pp. 1747-1756.

[Bre07] Brennan R. W., Toward Real-Time Distributed Intelligent Control: A Survey of
Research Themes and Applications, IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 37(5): 744-765, 2007.

[Bro86] Brooks, R.A. 1986. A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation RA-2(1): 14-23.

[Bru98] Brussel H. V., Wyns J., Valckernaers P., and Bongaerts L., “Reference architecture
for holonic manufacturing systems: PROSA,” Comput. Ind., vol. 37, pp. 255–274, 1998.

[Bus01] Bussmann S. and Schild K.: An Agent-based Approach to the Control of Flexible
Production Systems, in: Proc. of the 8th IEEE Int. Conf. on Emergent Technologies and
Factory Automation (ETFA 2001), p.481-488 (Vol.2). Antibes Juan-les-pins, France,
2001.

[Bus04] Bussmann S., Jennings N.R. and Wooldridge M. (2004). Multiagent Systems for
Manufacturing Control: A design Methodology. Springer Berlin-Heidelberg.

[Byr97] Byrne M. D. Byrne and Chutima P., "Real-time operational control of an FMS with
full routing flexibility," Inter-national Journal of Production Economics, vol. 51, pp. 109-
113, 1997.

[Cai01] Caire G., Leal F., Chainho P., Evans R., Jorge F.G., Juan Pavon G., Kearney P., Stark
J., and Massonet P. Project p907, deliverable 3: Methodology for agent-oriented software
neginnering. Technical Information Final version, European Institute for Research and
Strategic Studies in Telecommunications (EURESCOM), 09 2001.

[Can07] Candido G. and Barata J., “A multiagent control system for shop floor assembly,” in
HoloMAS 2007, V. Mařík, V. Vyatkin, and A.W. Colombo, Eds., LNAI 4659, Springer-
Verlag Berlin Heidelberg, 2007, pp. 293-302.

[Car09] Cardoso H. L., Integrating JADE and Jess, available at:
http://jade.tilab.com/doc/tutorials/jade-jess/jade_jess.html (11.02.2009)

[Cha02] Chan F. T. S., Chan H. K., and H. Lau C. W., "The State of the Art in Simulation
Study on FMS Scheduling: A Comprehensive Survey," The Int. J. of Ad-vanced
Manufacturing Technology, vol. 19, pp. 830-849, 2002.

[Che90] Cheng, T. C. E. and Sin, C. C. S.: A state-of-the-art review of parallel machine
scheduling research, European Journal of Operational Research, Vol. 47 (1990) 271-292.

[Chr03] Christensen J. H., “HMS/FB architecture and its implementation,” in Agent-Based
Manufacturing: Advances in the Holonic Approach, S. M. Deen, Ed. Berlin, Germany:
Springer-Verlag, 2003, pp. 53–88.

[Chr07] Christo C. and Cardeira Carlos “Trends in Intelligent Manufacturing Systems”
Proceedings of the IEEE International Symposium on Industrial Electronics
(ISIE2007), Vigo (Spain), June 4-7, 2007, Page(s):3209 - 3214.

[CLI09] CLIPS: A Tool for Building Expert Systems.
http://www.ghg.net/clips/WhatIsCLIPS.html (11.02.2009)

[Col06] Colombo, A.W.; Schoop, R.; Neubert, R. :"An agent-based intelligent control
platform for industrial holonic manufacturing systems," IEEE Trans. on Industrial
Electronics, vol. 53, no. 1, pp. 322- 337, 2006.

BIBLIOGRAPHY

103

[Cor05] Corsar D. and Sleeman D. Reusing JessTab Rules in Protégé. In Proceedings of AI-
2005, publ: Springer, pp 7-20. 2005

[DAML] DAML Webpage, http://www.daml.org/ Accessed 16.08.08.
[Dav94] Davidsson, P., (1994), "Concepts and autonomous agents", LU-CS-TR, 94-124,

Department of Computer Science, Lund University.
[Del96] Delchambre, A. (1996). CAD Method for Industrial Assembly: Concurrent Design of

Products, Equipment, and Control Systems, John Wiley & Sons Ltd.
[DeL01] DeLoach S., Wood M., and Sparkman C.. Multiagent systems engineering.

International Journal of Software Engineering and Knowledge Engineering,
11(3):231{258, 2001.

[Dev00] Devianov B. and Toueg S.. Failure detector service for dependable computing. In
Proc. of the First Int’l Conf. on Dependable Systems and Networks, pages 14–15, juin
2000.

[Eri02] Eriksson H. The JESS TAB Approach to Protégé and JESS Integration. In
Proceedings of the IFIP 17th World Computer Congress - TC12 Stream on Intelligent
Information Processing, pages 237–248. Kluwer, B.V., 2002.

[Eri03] Eriksson, H.: Using JessTab to Integrate Protege and Jess. IEEE Intelligent Systems
(2003), 18(2):43-50.

[Fac06] Faci N., Guessoum Z. and Marin O., “DimaX: A Fault Tolerant Multi-agent
platform”, In: Proceedings of the SELMAS’06., Shanghai, China (2006)

[Fav04] Favre-Bulle B.: "Automatisierung komplexer Industrieprozesse"; Springer-Verlag,
Wien - New York, Wien, 2004

[Fen04] Feng, S.C.; Stouffer, K.A.; Jurrens, K.K. “Intelligent agents-enabled integrated
manufacturing planning and control” The 8th International Conference on Computer
Supported Cooperative Work in Design, 2004.

[Fin94a] Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML: as an Agent
Communication Language. Association of Computing Machinery (1994)

[Fin94b] Finin T, Fritzson R, McEntire R (1994) KQML as an agent communication
language. Proc 3rd International Conference on Information and Knowledge
Management. CIKM’94), ACM

[Fin97] Finin T., Labrou Y. and Mayfield J., KQML as an agent communication language I.
In: J. Bradshaw, Editor, Software Agents, MIT Press, Cambridge, MA (1997).

[Fou03] Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification http://www.fipa.org/specs/fipa00037/ and FIPA ACL Message Structure
Specification http://www.fipa.org/specs/fipa00061/, (2003)

[Fox98] Fox, M., Barbuceanu, M., Gruninger M,, and Lin J. “An Organization Ontology for
Enterprise Modelling” Simulating Organizations: Computational Models of Institutions
and Groups, M. Prietula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT Press,
pp. 131-152

[Giu02] Giunchiglia F., Mylopoulos J., and Perini A. The Tropos software development
methodology: Processes, Models and Diagrams. In Third International Workshop on
Agent-Oriented Software Engineering, July 2002.

[Gol98] Goldsmith, S. Y. and Interrante, L. D. (1998) An autonomous manufacturing
collective for job shop scheduling. In: The Proceedings of AI & Manufacturing Research
Planning Workshop, pp. 69-74, Albuquere, AAAI Press.

[Gon06] Gonzalez E. J., Hamilton A. F., Moreno L., Marichal R. L. and Munoz V. “Software
experience when using ontologies in a multi-agent system for automated planning and
scheduling“ Softw. Pract. Exper. 2006; (Published online)

[Gru93] Gruber T. R. „A translation approach to portable Ontologies” Knowledge
Acquisition, 1993

BIBLIOGRAPHY

104

[Gru05] Grüninger, M. and J. B. Kopena (2005), Planning and the Process Specification
Language, In: Proceedings of WS2 ICAPS 2005, pp. 22-29.

[Gue04] Guessoum Z., Ziane M., Faci N., Monitoring and Organizational-Level Adaptation
of Multi-Agent Systems, AAMAS’04, ACM, pp. 514-522, New York City, July 2004.

[Gun98] Gunasekaran A. "Agile Manufacturing: Enablers and an Implementation
Framework," International Journal of Production Research, vol. 36, no. 5, pp. 1223-1247,
May 1998.

[Gun04] Gungui, I., 2004. Integrazione di agenti logici in DCaseLP. Master’s thesis,
Computer Science Department of Genova University, Italy

[Gun05] Gungui, I. : Integrating Logical Agents Into DCaseLP, MSc Thesis - the Department
of Computer Science -. University of Genova, 2005

[Hag96] Hagg, S. (1996). A Sentinel Approach to Fault Handling in Multi-Agent Systems.
Proceedings of the Second Australian Workshop on Distributed AI, in conjunction with
Fourth Pacific Rim International Conference on Artificial Intelligence (PRICAI'96),
Cairns, Australia.

[Hah94] S. Hahndel and P. Levi, "A distributed task planning method for autonomous agents
in a FMS," in Intelli-gent Robots and Systems '94. 'Advanced Robotic Sys-tems and the
Real World', IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on,
1994, pp. 1285-1292 vol.2.

[Har73] Harrington J. Computer integrated manufacturing. New York: Industrial Press, 1973.
[Heg08] Hegny I., Hummer-Koppendorfer O., Zoitl A., Koppensteiner G. and Merdan M.,

"Integrating Software Agents and IEC 61499 Realtime Control for Reconfigurable
Distributed Manufacturing Systems", IEEE 3rd International Symposium on Industrial
Embedded Systems - SIES 2008, France;

[Hei00] Heilala J, & Volvo P, “Modular Reconfigurable Flexible Final Assembly Systems In
Electronic Industry”, Assembly Automation Workshop, Netherlands, 11’-12” May 2000

[Hei01] Heilala, J. and Voho, P. (2001) ‘Modular reconfigurable flexible final assembly
systems’, Assembly. Automation, Vol. 21, No. 1, pp.20–28.

[Hel04] Helsinger, A., Thome, M., and Wright, T. “Cougaar: A Scalable, Distributed Multi-
Agent Architecture.” In Proceedings of the 2004 IEEE Conference on Systems, Man, and
Cybernetics. The Hague, The Netherlands. October, 2004.

[Hev01] Heverhagen T. and Tracht R., “Integrating UML-Real Time and IEC 61131-3 with
function block adapters,” in Proc. 4th IEEE Int. Symp. Object-Oriented Real-Time
Distrib. Comput. (ISORC 2001), May 2–4, pp. 395–402.

[Hil98] Hiller M., Software Fault-Tolerance Techniques from a Real-Time Systems Point of
View. Department of Computer Engineering, Chalmers University of Technology,
Göteborg, 1998.

[Hob87] Hobbs, J., Croft W., Davies T., Edwards D., and Laws K., (1987). The TACITUS
Commonsense Knowledge Base, Artificial Intelligence Research Center, SRI
International.

[Hod05] Hodík, J. Bečvář, P. Pěchouček, M. Vokřínek, J. and Pospíšil, J.: ExPlanTech and
ExtraPlanT: multi-agent technology for production planning, simulation and extra-
enterprise collaboration. International Journal of Computer Systems Science and
Engineering. 2005, vol. 20, p. 357-367

[Hol95] Hollis, R. and Quaid, A.: An Architecture for Agile Assembly American Society of
Precision Engineering 10th Annual Mtg, October, 1995.

[Hol97] Holthaus, O. 1997. “Design of Efficient Job Shop Scheduling Rules”. Computers and
Industrial Engineering 33, No. 1, 245-252.

[Hol06] Holmström P., "Modelling Manufacturing Systems Capability", Production
Engineering, Dissertation. 2006-06-07, TRITA-IIP-06-04.

BIBLIOGRAPHY

105

[Huh02] Huhns, MN, Holderfield, VT, and Gutierrez, RLZ Achieving Software Robustness
via Large-Scale Multiagent Systems. In Proceedings of SELMAS. 2002, 199-215.

[Hur01] Hurink J. and Knust S., "Makespan minimization for flow-shop problems with
transportation times and a single robot," Discrete Applied Mathematics, vol. 112, pp. 199-
216, 2001.

[IEC04] IEC TC65/WG6, IEC 61499: Function blocks for industrial-process measurement
and control systems – Parts 1 to 4. Geneva: International Electrotechnical Commission
(IEC), 2004-2005.

[IEC31] IEC TC65/WG6, Programmable controllers – Part 3: Programming languages.
Geneva: International Electrotechnical Commission (IEC),1993.

[IEC99] IEC TC65/WG6, IEC 61499: Function blocks for industrial-process measurement
and control systems – Parts 1 to 4. Geneva: International Electrotechnical Commission
(IEC), 2004-2005.

[JAD08] JADE - Java Agent Development Framework, http://jade.tilab.com/, Accessed July
2008.

[Jen98] Jennings N. R. and Wooldridge M., “Applications of intelligent agents,” in Agent
Technology, N. R. Jennings and M. J. Wooldridge, Eds: Springer, 1998, pp. 3–28.

[Jen01] Jennings N.R., An agent-based approach for building complex software systems,
Communications of the ACM 44 (4) (2001) 35– 41.

[Jen03] Jennings, N.R., Bussman, S. Agent-Based Control Systems: Why are They Suited to
Engineering Complex Systems? IEEE Control Systems Magazine, 23(3), 2003, pp. 61-73.

[Joh01] John, K. and Tiegelkamp, M. (2001) IEC 61131-3: Programming Industrial
Automation Systems, Springer.

[Jon86] Jones, A. T. and McLean, C. R.: “A proposed hierarchical control model for
automated manufacturing systems,” J. Manufac. Syst., vol. 5, no. 1, pp. 15–25, 1986.

[Kal07] Kalogeras, A.P.; Ferrarini, L.; Lueder, A.; Gialelis, J.; Alexakos, C.; Peschke, J.;
Veber, C.;, "Ontology-driven control application design methodology", ETFA07, IEEE
Conference on Emerging Technologies & Factory Automation, 25-28 Sept. 2007, P. 1425
- 1428.

[Kam98] Kaminka G. A. and Tambe M.. What is Wrong With Us? Improving Robustness
Through Social Diagnosis. In Proceedings of the 15 th National Conference on Artificial
Intelligence (AAAI-98), 1998.

[Kha05] Khan Z.A., Shahid S., Ahmad H.F., Ali A., and Suguri H., “Decentralized
architecture for fault tolerant multi agent system,” Proceedings of Autonomous
Decentralized Systems, pp. 167–174, April 2005, Chengdu, Jiuzhaigou, China.

[Kid94] Kidd, P. T. (1994). Agile manufacturing: Forging new frontiers. England: Addition-
Wesley.

[Kim06] Kim K. Y,. Manley D. G., Yang and H. J., “Ontology-based Assembly Design and
Information Sharing for Collaborative Product Development,” Computer-Aided Design
(CAD), Vol. 38, 2006, pp. 1233-1250.

[Kis06] Kishore R., Zhang H. and Ramesh R. “Enterprise integration using the agent
paradigm: foundations of multi-agent-based integrative business information systems”
Decision Support Systems 42 (2006) 48– 78

[Kop08a] Koppensteiner G.; Merdan M.; Zoitl A. & Favre-Bulle B. (2008): Ontology-based
Resource Allocation in Distributed Systems using Director Facilitator Agents, IEEE
International Symposium on Industrial Electronics ISIE’08, Cambridge, UK

[Kop08b] Koppensteiner G., Merdan M., Hegny I., and Weidenhausen G. (2008): A Change-
Direction-Algorithm for distributed Multi-Agent Transport Systems, 2008 IEEE
International Conference on Mechatronics and Automation, Takamatsu, Japan, 2008.

BIBLIOGRAPHY

106

[Kop08f] Koppensteiner G., Merdan M., Zoitl A., Favre-Bulle B.(2008): Ontology-based
Resource Allocation in Distributed Systems using Director Facilitator Agents, IEEE
International Symposium on Industrial Electronics, Cambridge, United Kingdom,

[Kop09] Koppensteiner G., Merdan M., Lepuschitz W., Hegny I., Hybride Based Approach
for Fault Tolrence in a Multi-Agent System, IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM’2009), Singapore,2009 (submitted)

[Kro99] Krothapalli, N. K. C. and Deshmukh, A. V. (1999) Design of negotiation protocols
for multi-agent manufacturing systems. International Journal of Production Research, 37
(7), 1601-1624.

[Kul05] Kulvatunyou B., H. Cho, and Y. Son, "A semantic web service framework to support
intelligent distributed manufacturing," International Journal of Knowledge-Based and
Intelligent Engineering Systems, Vol. 9, No. 2, pp. 107-127, 2005.

[Kum00] Kumar, S., Cohen, P.: Towards a fault-tolerant multi-agent system architecture. In:
Proceedings of the Fourth International Conference on Autonomous Agents, ACM Press
New York, NY, USA (2000)

[Kum06] Kumar M. and Rajotia S. “Integration of process planning and scheduling in a job
shop environment” Int J Adv Manuf Technol (2006) 28: 109–116

[Kut95] Kutanoglu, E. and Sabuncuoglu, I., 1995, An investigation of reactive scheduling
policies under machine breakdowns. Proceedings of the 4th Industrial Engineering
Research Conference, pp. 904± 913.

[Kut01] Kutanoglu E. and Sabuncuoglu I., "Routing-based Reactive Scheduling Policies for
Machine Failures in Job Shops," Int J of Production Research, vol. 39, pp. 3141-3158
(2001)

[Lab01] Labrou Y., Standardizing agent communication. In: V. Marik and O. Stepankova,
Editors, Multi-Agent Systems and Applications (Advanced Course on Artificial
Intelligence) (2001), pp. 74–97

[Las06] Lastra, J. L. M, and Delamer I M. “Semantic Web Services in Factory
Automation:Fundamental Insights and Research Roadmap” IEEE Transactions On
Industrial Informatics, VOL. 2, NO. 1, February 2006 1

[Lee01] Lee, C. -Y. and Z. L. Chen,, "Machine scheduling with transportation
considerations," Journal of Scheduling, vol. 4, pp. 3-24, 2001.

[Lee06] Lee C. Y., Leung J. Y. T., and Yu G., "Two Machine Scheduling under Disruptions
with Transportation Considerations," Journal of Scheduling, vol. 9, pp. 35-48, 2006.

[Lei04] Leitão P., An Agile and Adaptive Holonic Architecture for Manufacturing Control,
doctoral dissertation, Dept. Electrical and Computer Eng., Univ. of Porto, Portugal, 2004.

[Lem06] Lemaignan, S. Siadat, A. Dantan, J.-Y. Semenenko, A. „MASON: A Proposal For
An Ontology Of Manufacturing Domain” IEEE Workshop on Distributed Intelligent
Systems: Collective Intelligence and Its Applications (DIS'06) pp. 195-200

[Lim04] Lim M.K. and Zhang D.Z. “An integrated agent-based approach for responsive
control of manufacturing resources” Computers & Industrial Engineering 46 (2004) 221–
232

[Loh05] Lohse N., Hirani, H. and Ratchev, S., 2005. An Ontology for the Definition and
Validation of Assembly Processes for Evolvable Assembly Systems. In: 6th IEEE
International Symposium on Assembly and Task Planning, Montreal, Canada.

[Lop06] Lopez, O. and J.L.M. Lastra (2006). Using Semantic Web Technologies to Describe
Automation Objects. Int. J. Manufacturing Research, 1(4):482-503.

[Lop07] Lopez O. J. and Lastra J. M.. A Real-Time Interface for Agent-Based Control. IEEE
Second International Symposium on Industrial Embedded Systems (SIES 07). Lisboa,
Portugal. July 2007.

BIBLIOGRAPHY

107

[Mal07] Malec J., Nilsson A., Nilsson K. and Nowaczyk S. “Knowledge-Based
Reconfiguration of Automation Systems” IEEE Conference on Automation Science and
Engineering, Scottsdale, AZ, USA, Sept 22-25, 2007

[Mar05] Martinez Lastra J.L., Torres E.L. and Colombo A.W. “A 3D visualization and
simulation framework for intelligent physical agents,“. In HoloMAS 2005, V. Mařík, R.
Brennan, and M. Pěchouček, Eds., LNAI 3593, Springer-Verlag Berlin Heidelberg, 2005,
pp. 23-38.

[Mar05a] Marık, V. Vrba, P. Hall, K.H. Maturana, F.P.: Rockwell Automation Agents for
Manufacturing. In The Fourth International Joint Conference on Autonomous Agents and
Multi Agent Systems – Special Track for Industrial Applications. New York: ACM, 2005,
s. 107-113.

[Mat96] Maturana, F. and Norrie, D. (1996). Multi-Agent Mediator Architecture for
Distributed manufacturing. Journal of Intelligent Manufacturing, 7:257-270.

[Mat04] Maturana F.P., Tich P., Slechta P., Discenzo F., Staron R.J. and Hall K., Distributed
multi-agent architecture for automation systems, Expert Systems with Applications 26
(2004) (1), pp. 49–56

[McL05] McLean, C., Lee Y. T., Shao G. and Riddick F. 2005. Shop Data Model and
Interface Specification, NISTIR 7198. National Institute of Standards and Technology,
Gaithersburg, MD.

[Mel05] Mellouli, S., FATMAS: a methodology to design fault-tolerant multi-agent systems.
Ph.D. Thèse, Université Laval, 2005

[Mer08] Merdan M., Koppensteiner G., Hegny I., Favre-Bulle B.: "Application of an
Ontology in a Transport Domain"; IEEE International Conference on Industrial
Technology, Sichuan University, Chengdu, China; 2008

[Mer08c] Merdan M.; Koppensteiner G.; Zoitl A. & Hegny I., (2008) Intelligent-Agent based
Approach for Assembly Automation, IEEE Conference on Soft Computing in Industrial
Applications, June 2008, SMCia/08 Muroran, Japan

[Mer08d] Merdan M., Moser T, Wahyudin D., Biffl S., and Vrba P. "Simulation of Workflow
Scheduling Strategies Using the MAST Test Management System"; 10th International
Conference on Control, Automation, Robotics and Vision (ICARCV), Hanoi, Vietnam;
2008.

[Mer08e] Merdan M., Vittori L., Koppensteiner G., Vrba P., and Favre-Bulle B. "Simulation
of an ontology-based multi-agent transport system", International Conference on
Instrumentation, Control and Information Technology (SICE), Tokyo, Japan, 2008.

[Mer09] Merdan M. Lepuschitz W. Hegny I. and Koppensteiner G. „Application of a
Communication Interface between Agents and the Low Level Control” 4th International
Conference on Autonomous Robots and Agents. Wellington, New Zealand, 2009.

[Mil05] Miller, J. and Baramidze G.. (2005). Simulation and the semantic web. Proceedings
of the 2005 Winter Simulation Conference. Piscataway, New Jersey:Institute for
Electrical and Electronics Engineers.

[Mok01] Mokotoff, E. (2001) ‘Parallel machine scheduling problems: a survey’, Asia-Pacific
Journal of Operational Research, Vol. 18, No. 2, pp.193–242.

[Mon03] Monch L., Stehli M. and Zimmermann J., “FABMAS: an agentbased system for
production control of semiconductor manufacturing process,” in HoloMAS 2003, V.
Mařík, D. McFarlane, and P. Valckenaers, Eds., LNAI 2744, Springer-Verlag Berlin
Heidelberg, 2003, pp. 258-267.

[Mon05] Mönch L., Stehli M., „ManufAg: a multi-agent-system framework for production
control of complex manufacturing systems” Springer-Verlag 2005

[Mor05] Morel, G., Valckenaers, P., Faure, J. M., Pereira, C., & Diedrich, C. (2005).
Manufacturing plant control: Challenges and open issues. In Proceedings of the 16th
IFAC Triennial World Congress

BIBLIOGRAPHY

108

[Mos05] Mostefai S., Bouras A. and Batouche M. “Effective Collaboration in Product
Development via a Common Sharable Ontology” International Journal of Computational
Intelligence Volume 2 Number 4 2005

[Nec91] Neches, R., Fikes R., Finin T., Gruber T., Patil R., Senator T., and Swartout W. R.
(1991). Enabling technology for knowledge sharing. AI Magazine 12(3):36-56.

[Obi02] Obitko, M. and V. Mařík (2002). Ontologies for Multi-Agent Systems in
Manufacturing Domain, Proceedings of the 13th International Workshop on Database and
Expert Systems Applications (DEXA’02)

[Obi08] Obitko M., Vrba P., Marik V. and Radakovic M. “Semantics in Industrial Distributed
Systems “The 17th IFAC World Congress, Seoul, Korea, 2008

[Oki93] Okino N., Bionic Manufacturing System- Flexible Manufacturing Systems Past-
Present-Future, 1993, pages 73–95.

[Oli94] Oliveira E., “Cooperative multi-agent system for an assembly robotics cell,” Robot.
Comput. Integr. Manufac., vol. 11, no. 4, pp. 311–317, 1994.

[Oue98] Ouelhadj D., Hanachi C., and Bouzouia B., “Multi-agent system for dynamic
scheduling and control in manufacturing cells,” in Working Notes of the Agent-Based
Manufacturing Workshop, Minneapolis, MN, 1998, pp. 96–105.

[Oue07] Ouelhadj, D. & Petrovic, S. Survey of Dynamic Scheduling in Manufacturing
Systems, Journal of Scheduling, t/a: t/a, 2007 (accepted)

[OWL] Web Ontology Language OWL, http://www.w3.org Accessed 16.08.08.
[Par01] Parunak F.V.D., Baker A.D., and Clark S.J., "The AARIA agent architecture: From

manufacturing requirements to agent-based system design", Integrated Conipuler-Aided
Engineering, Vol. 8, No. 1, pp. 45-58, 2001.

[Par87] Parunak, V. 1987. Manufacturing Experience with the Contract Net. In Distributed
Artificial Intelligence, Volume 1, ed. M. Huhns, 285–310. London: Pitman.

[Par96] Parunak, H. V. (1996). Applications of distributed artificial Intelligence in industry.
In: Foundation of Distributed Artificial Intelligence, Chapter 4, Eds. O’Hare, G. M. P. and
Jennings, N. R., Wiley Interscience, New York.

[Par97] Parunak, H.V.D. and VanderBok, R.: Managing Emergent Behavior in Distributed
Control Systems. In Proceedings of IAS-TECH/97 conference, Anaheim, CA, 1997

[Par98] Parunak H.V.D., Baker A. and Clark S., The AARIA agent architecture: From
manufacturing requirements to agent-based system design, in: Working Notes of the ABM
Workshop, Minneapolis, MN, 1998, pp. 136–145.

[Pat05] Patil L., Dutta D., Sriram R.D., Ontology-based exchange of product data semantics,
IEEE Transactions on Automation Science and Engineering 2 (3) (2005) 213-225.

[Pec02] Pechouček M., Rıha A., Vokrınek J., Marık V., and Prazma V., “Explantech:
applying multi-agent systems in production planning,” International Journal of Production
Research, vol. 40, no. 15, pp. 3681–3692, 2002.

[Pec05] Pechoucek, M., Rehak, M. and Marik, V. "Expectations and Deployment of Agent
Technology in Manufacturing and Defence: Case Studies," Proc. 4th Int'l Conf.
Autonomous Agents and Multi-Agent Systems—AAMAS 2005 Industry Track, ACM
Press,2005.

[Pec07] Pechouček, M., Rehák, M., Charvát, P., Vlček, T. and Kolář, M. (2007): Multi-
Agent Planning in Mass-Oriented Production. IEEE Trans. SMC, part C, vol. 37, No.3,
pp. 386-395

[Pec08] Pechoucek M. and Marik V.: Industrial Deployment of Multi-Agent Technologies:
Review and Selected Case Studies. International Journal on Autonomous Agents and
Multi-Agent Systems. 2008, DOI10.1007/s10458-008-9050-0

[Pen99] Peng Y., Finin T., Labrou Y., R. Cost S., Chu B., Long J., Tolone W. J., and
Boughannam A., “Agent-based approach for manufacturing integration: The CIIMPLEX
experience,” Appl. Artif. Intell., vol. 13, no. 1, pp. 39–63, 1999.

BIBLIOGRAPHY

109

[Pes01] Pesenti, R., Castelli, L., Santin, P., 2001, Scheduling in einer realistischen Umgebung
Mit Autonome Agenten: A Simulation Study. Proceedings of Agent Based Simulation II
Workshop, Passau, Germany, April 2-4, pp.149-154. Proceedings of Agent-Based-
Simulation-II Workshop, Passau, Deutschland, April 2-4, pp.149-154.

[Pin02] Pinedo, M., Scheduling theory, algorithms and systems, Second edition, Prentice
Hall, 2002.

[Pla08] Platon E., Sabouret N., Honiden S., An architecture for exception management in
multiagent systems, International Journal of Agent-Oriented Software Engineering, v.2
n.3, p.267-289, 2008

[Qiu05] Qiu X.: Agent Interaction in a Semantic Web Environment: A state-of-the-art survey
and prospects in knowledge mobilization. Information Systems Research in Scandinavia,
IRIS’28, Kristiansand, Norway, 2005.

[Rab93] Rabemanantsoa, M., Pierre, S., "Knowledge-based System for Assembly Process
Planning", in Proceedings of IEEE Software Engineering Standards Symposium
(SESS93), Brighton, England, September 1- 3, 1993, pp. 267-272.

[Raj99] Rajendran C. and Holthaus O., "A comparative study of dispatching rules in dynamic
flowshops and job-shops," European Journal of Operational Research, vol. 116, pp. 156-
170, 1999.

[Raj04] Rajakumar S., Arunachalam V. P., and Selladurai V., "Workflow balancing strategies
in parallel machine scheduling," The International Journal of Advanced Manufacturing
Technology, vol. 23, pp. 366-374, 2004.

[Raj06] Rajpathak, D.G. and Motta, E. and Zdrahal, Z. and Roy, R. (2006) A generic library
of problem solving methods for scheduling applications. IEEE Transactions on
Knowledge and Data Engineering, 18 (6). pp. 815-828.

[RDF] Resource Description Framework RDF, http://www.w3.org/RDF/ Accessed 16.08.08.
[RDFS] RDF Schema http://www.w3.org/TR/rdf-schema Accessed 16.08.08.
[Saa97] Saad, A., Kawamura, K., and Biswas, G., “Performance Evaluation of Contract Net-

Based Heterarchical Scheduling for Flexible Manufacturing Systems”, Special Issues on
Intelligent Manufacturing Planning and Shop Floor Control, International Journal of
Intelligent Automation and Soft Computing, 1997.

[Sab00] Sabuncuoglu, I. and Bayiz, M., Analysis of reactive scheduling problems in a job
shop environment, European Journal of Operational Research, 126 (3), 567-586 (2000).

[Sandi07] Sandia National Laboratories, Jess: the Rule Engine for the JavaTM Platform.
Available at: http://herzberg.ca.sandia.gov/, last visited December 2007.

[Sch00] Schoop R. and Neubert R., Agent-Oriented Material Flow Control System Based on
DCOM, Proceedings of the Third IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, p.342, March 15-17, 2000

[Sei03] Seilonen, I., Pirttioja, T., Appelqvist, P., Halme, A., Koskinen, K.: Distributed
Planning Agents for Intelligent Process Automation, Accepted to the 5th IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA 2003). Kobe, Japan (2003)

[She98] Shen W., and Norrie H.N., "An agent-based approach for dynamic manufacturing
Scheduling", Proceedings of Autonomous Agents '98 Workshop on Agent-Based
Manufacturing, Minneapolis/St.Paul, MN, pp. 117-128,1998.

[She99] Shen W., Norrie D.H.: Agent-based Systems for Intelligent Manufacturing : A State-
of-the-Art Survey, Knowledge and Information Systems, an International Journal, Vol.1,
No.2, 1999, p. 129-156.

[She00a] Shen W., Maturana F. and Norrie D.H., MetaMorph II: an agent-based architecture
for distributed intelligent design and manufacturing, Journal of Intelligent Manufacturing
11 (3) (2000) 237–251.

BIBLIOGRAPHY

110

[She00] Shen, W., Barthes J. P., and Norrie D. H.,. Multi-Agent Systems for Concurrent
Intelligent Design and Manufacturing, Taylor & Francis, 2000.

[She01] Shen, W, Norrie, DH, and Barthes, JA, Multi-Agent Systems for Concurrent
Intelligent Design and Manufacturing, Taylor & Francis, London, 2001.

[She02] Shen W.M., Distributed manufacturing scheduling using intelligent agents, IEEE
Intell Syst Appl 17 (2002)

[She06] Shen W.M., Wang L.H. and Hao Q., Agent-based distributed manufacturing process
planning and scheduling: a state-of-the-art survey, IEEE Transactions on Systems, Man,
and Cybernetics—Part C: Applications and Reviews 36 (4) (2006), pp. 563–577.

[She07] Shen W. & Norrie D.(1997), " Facilitator, Mediator or Autonomous Agents", In
Proceedings of the Second International Workshop on CSCW in Design, Bangkok,
Thailand. pp. 119--124.

[Smi80] Smith R (1980) The contract net protocol: high level communication and control in
distributed problem solver. IEEE Transactions on Computers, 29:1104-1113.

[Smi97] Smith S. and Becker M., An Ontology for Constructing Scheduling Systems;
Working Notes of 1997 AAAI Symposium on Ontological Engineering, AAAI Press,
March, 1997

[Sny04] Snyder, R., Tomlinson, R.T.: Robustness Infrastructure for Multi-Agent Systems. In:
Proceedings of the Open Cougaar, N.Y., U.S.A (2004)

[Stanf07] Stanford Medical Informatics, Stanford University. Protege Website. http:// pro-
tege.stanford.edu., Accessed December 2007.

[Sto00] Stone P. and Veloso M., Multiagent systems: a survey from a machine learning
perspective, Autonomous Robots, volume 8, number 3. 2000.

[Sun01] Sun, J. and Xue, D. (2001) A dynamic reactive scheduling mechanism for responding
to changes of production orders and manufacturing resources. Computers in Industry, 46
(2), 189-207.

[Sun05] Sunder C., Zoitl A., Strasser T., and Favre-Bulle B., “Intuitive control engineering
for mechatronic components in distributed automation systems based on the reference
model of IEC 61499,” in 3rd IEEE International Conference on Industrial Informatics,
2005 (INDIN ’05). Proceedings of, August 2005, pp. 50–55.

[Syc98] Sycara K.. Multiagent systems. AI Magazine, 19(2):79- 92, 1998.
[Tay11] Taylor, F.W. (1911). The principles of scientific management. New York: Harper.
[Teh08] Tehrani H., Sugimura N., Iwamura K. And Tanimizu Y., “Integrated Dynamic

Process Planning and Scheduling in Flexible Manufacturing Systems via Autonomous
Agents”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2,
No. 4 (2008), pp.719-734 .

[Tha96] Tharumarajah A., Wells A. J., and Nemes L., “Comparison of the bionic, fractal and
holonic manufacturing system concepts,” Int. J. Comput. Integr. Manuf., vol. 9, no. 3, pp.
217–226, May 1996.

[Tha04] Thadakamalla H. P., Raghavan U. N., Kumara S., and Albert R., "Survivability of
Multiagent-Based Supply Networks: A Topological Perspective," IEEE Intelligent
Systems Magazine, vol. 19, iss. 5, pp. 24— 31, 2004.

[Thr05] Thramboulidis, K., “IEC 61499 in Factory Automation”, Int. Conf. on Industrial
Electronics, Technology & Automation (CISSE-IETA 05), Dec. 10-20, 2005

[Tic06] Tichy P., Slechta P., Staron R. J., Maturana F. P., and Hall K. H., “Multiagent
Technology for Fault Tolerance and Flexible Control,” IEEE Transactions On Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 36, iss. 5, pp. 700-704,
2006.

[Tom05] Tomás V. R., and Garcia L. A., “A Cooperative Multiagent System for Traffic
Management and Control”, Proc. of AAMAS’05, Utrecht, The Netherlands, July 25-29,
2005.

BIBLIOGRAPHY

111

[UML] Unified Modeling Language UML, http://www.uml.org/ Accessed 16.08.08.
[Usc98] Uschold M., King M., Moralee S. and. Zorgios Y (1998) The Enterprise Ontology

The Knowledge Engineering Review , Vol. 13, Special Issue on Putting Ontologies to Use
(eds. Mike Uschold and Austin Tate).

[Ush03] Usher J. M., “Negotiation-based routing in job shops via collaborative agents,” J.
Intell. Manuf., vol. 14, no. 5, pp. 485–499, 2003.

[Utp99] Utpal B (1999) A cooperative problem solving framework for computer-aided
process planning. Proc 32nd Hawaii International Conference on System Sciences

[Val04] Valckenaers P: “Challenges of Next Generation Manufacturing Systems” in
Integration of Software Specification Techniques forApplications in Engineering: H.
Ehrig et al. (Eds.):pp. 23–28, 2004.

[Vie03] Vieira, G. E., Hermann, J. W., and Lin, E., Re-scheduling manufacturing systems: a
framework of strategies, policies and methods, Journal of Scheduling, 6 (1), 36-92 (2003).

[Vis98] NRC. (1998). Visionary Manufacturing Challenges for 2020. Washington: National
Academy Press

[Vos01] Vos J.A.W.M. “ Module and System Design in Flexibly Automated Assembly”,
Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, 2001.

[Vrb05] Vrba, P., and Mařík, V. (2005): From Holonic Control to Virtual Enterprises: The
Multi-Agent Approach. In: The Industrial Information Technology - Handbook. Boca
Raton: CRC Press, pp. 107-1-107-19.

[Vrb08] Vrba P., Marík V. & Merdan M.: Physical Deployment of Agent-based Industrial
Control Solutions: MAST Story: 2008 IEEE International Conference on Distributed
Human-Machine Systems Athens, Greece MARCH 9-12, 2008,

[Vya02] Vyatkin V., Hanisch H.-M., and Karras S., IEC 61499 as an architectural framework
to integrate formal models and methods in practical control engineering, Congress Electric
Automation SPS/IPC/Drives, Nuernberg, Germany, November 2002.

[Vya05] Vyatkin, V., J. Christensen, J.L.M. Lastra and F. Auinger (2005). OOONEIDA: An
Open, Object-Oriented Knowledge Economy for Intelligent Industrial Automation. IEEE
Transactions on Industrial Informatics, 1(1):4-17.

[W3CSe] W3CSemanticWeb. W3C Semantic Web. http://www.w3.org/ 2001/sw/ Accessed
16.08.08.

[Wan98] Wang L., Balasubramanian S. and Norrie DH. “Agent-based Intelligent Control
System Design for Real-time Distributed Manufacturing Environments,” Notes of
Autonomous Agents'98 Workshop on Agent-Based Manufacturing, Minneapolis, 1998,
pp. 152-159.

[War93] Warnecke H. J., The Fractal Company, Springer, Berlin, 1993.
[Wass99] Wasson, G.: Design of Representation Systems for Autonomous Agents, University

of. Virginia, Dissertation, 1999.
[Wel95] Welmann, M. P. (1995). Market-oriented programming: Some early lessons. In S. H.

Clearwater (Ed.), Market-based control: A paradigm for distributed resource allocation.
Singapore: World Scientific.

[Whi96] Whitney, D., The Potential for Assembly Modeling in Product Development and
Manufacturing. MIT Press, 1996

[Wom90] Womack J. P., Jones D. T., and Roos D., The Machine that Changed the World.
New York: Simon & Schuster, Inc., 1990.

[Won06] Wong T. N., Leung C. W., Mak K. L. and Fung R. Y. K., "Dynamic shopfloor
scheduling in multi-agent manufacturing systems", Expert Systems with Applications, Vol
31, No.3, 2006, pp 486-494.

[Woo86] Woods W. A., "Important issues in knowledge representation,"Proc. IEEE, vol . 74,
no. 10, pp. 1322-1334, Oct. 1986.

BIBLIOGRAPHY

112

[Woo98] Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In:
AGENTS ’98: Proceedings of the second international conference on Autonomous agents,
ACM Press (1998) 385–391

[Woo99] Wooldridge M. Intelligent Agents. In Weiss Gerhard editor .). Multiagent Systems.
A Modern Approach to Distributed Artificial Intelligence. The MIT Press, Cambridge,
MA, London, 1999. pp. 27-78

[Woo00] Wooldridge M., Jennings N.R., and Kinny D.. The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3), 2000.

[Wu07] Wu J. and Durfee E. H.. Sequential resource allocation in multi-agent systems with
uncertainties. In Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, 2007.

[Xua04] Xuan P. A Mechanism for Robust Plan Adaptation in Large Scale Multiagent
Operations. In Proceedings of the Workshop on Challenges in the Coordination of Large
Scale Multiagent Systems, AAMAS 2004.

[Yin07] Yingzi W., Kanfeng G., Hongjun L. and Donglai L., (2007) Contract Net based
Scheduling Approach using Interactive Bidding for Dynamic Job Shop Scheduling, IEEE
International Conference on Integration Technology, , Shenzhen, China, pp: 281-286

[Zei08] Zeichen G., Zoitl A., Prenninger J.: "Systemtechnologien für Produktionssysteme";
ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 103 (2008), 9; S. 589 - 593.

[Zha00] Zhao, F.L., Tso, S.K., and Wu, P.S.Y, "A cooperative agent modelling approach for
process planning", 2000, Computers in Industry, Vol.41, 83-97;

[Zha03] Zha, X.F., Lim, S.Y.E. and W. F. Lu, “A Knowledge Intensive Multi-Agent System
for Cooperative/Collaborative Assembly Modeling and Process Planning”Journal of
Integrated Design and Process Science MARCH 2003, Vol. 7, No. 1, pp. 100-121

[Zha07] Zhang W. J. and Xie S. Q. “Agent technology for collaborative process planning: a
review” Int. J. Adv. Manuf.Technol, (2007) 32: 315–325

[Zhu00] Zhu D., Zhao L., Zhang J.. “A Method of Generating Assembly Plan Based on Level
Hierarchy Connection Relation Model”, Journal of East China Shipbuilding
Institute.14(1): 71-75, Jan 2000.

[Zoi06a] Zoitl A., Smodic R., and Grabmair G., “Enhanced real-time execution of modular
control software based on IEC 61499,” in Proc. IEEE Int. Conf. Robot. Autom., May
2006, pp. 327–332.

[Zoi06b] Zoitl A., Sünder C.K., Terzic I., "Dynamic Reconfiguration of Distrubuted Control
Applications with Reconfiguration Services based on IEC 61499," in 2006 IEEE
Workshop on Distributed Intelligent Systems, IEEE Computer Society, June 2006, pp..
109 - 114.

[Zoi07] Zoitl A., Strasser T., Hall K., Staron R., Sünder C.K., Favre-Bulle B., "The Past,
Present, and Future of IEC 61499," in Holonic and Multi-Agent Systems for
Manufacturing", Sep. 2007, pp. 1 - 14.

[ZoiDiss07] Zoitl A."Basic Real-Time Reconfiguration Services for Zero Down-Time
Automation Systems"; Institut für Automatisierungs- und Regelungstechnik, TU Vienna,
Austria 2007

APPENDIX A. RULES 113

A. Rules

In order to explain the rule-based behavior of our agents, in this section we will

present a few simplified rules. Since the whole system has more than 200 of them, all other
rules as well as the source code are available from the author upon request.

After the agent of conveyor CC1 gets a message that the specific pallet enters it, the
rule CA_add_newPallet will fire causing that this conveyor updates its knowledge base by
adding the a new pallet in its hasPallet multislot (Figure A.1). The information about the
pallet is included in the content of the message.

Figure A.1: Conveyor receives a new pallet

A part of the conveyor ontology is presented in Figure A.2.

Figure A.2: Part of the conveyor ontology

Pallet CC1

inSensor

outSensor

CA_add_newPallet

APPENDIX A. RULES 114

When the pallet leaves the conveyor, the CA_forward_Pallet rule will fire causing that
the conveyor CC1 agent deletes the pallet from its knowledge base and informs the outNode
agent about the approaching pallet (Figure A.3).

Figure A.3: Conveyor forwards a new pallet

As a second example we will present rules where the pallet agents participate in a
negotiation about a transport task allocation (Figure A.4).

Figure A.4: Pallet Agent negotiation rule

PalletCC1

inSensor

outSensor

CA_forward_Pallet

APPENDIX A. RULES 115

After the SA sends the CFP to all free pallets in the system (in our case p1 and p2 as
presented in Figure A.5), the conditions for firing the rule PA_negotiate_Task, which is
presented in Figure A.4, are reached. The related pallet agents calculate the distance of their
pallets to the destination and send their results as PROPOSE messages back to the SA.

Figure A.5. Negotiation between the SA and pallet agents

APPENDIX A. RULES 116

Since the distance of the p1 agent’s pallet (as presented in Figure A.5) is 65 and the distance
of the p2 agent’s pallet (as presented in Figure A.6) is 21, the SA allocates the task
>OP_transport_1_WO_Product_Order_459_Sub_Assemb_1a_Axle< to the p2 agent.

Figure A.6. The bid of the p2 agent

A part of the pallet ontology is presented in Figure A.7.

Figure A.7: Part of the pallet ontology

After the pallet agent gets the CONFIRM message about the transport task, conditions for
firing the PA_update_next_destination rule are satisfied (Figure A.8). The pallet agent
deregisters its services at the DF agent and informs all RFID agents to reprogram its pallet to
the new destination, when it passes by.

APPENDIX A. RULES 117

Figure A.8: Pallet agent updates the new destination rule

APPENDIX B. PUBLICATIONS

118

B. Publications

Merdan M., Terzic I., Zoitl A., Favre-Bulle B.:"Intelligent Reconfiguration Using Knowledge

Based Agent System"; 10th IEEE International Conference on Emerging Technologies
and Factory Automation, Catania, Italien; 2005

Merdan M., Kordic V., Zoitl A., Lazinica A.:"Knowledge-based Multi-agent Architecture",
International Conference on Computational Intelligence for Modelling Control and
Automation 2006, Sydney, Australia; 2006

Merdan M., Koppensteiner G., Zoitl A., Favre-Bulle B.:"Distributed Agents Architecture
Applied in Assembly Domain"; International Symposium on Knowledge and Systems
Sciences (KSS), Ishikawa, Japan; 2007;

Merdan M., Koppensteiner G., Hegny I., Favre-Bulle B.:"Application of an Ontology in a
Transport Domain"; IEEE International Conference on Industrial Technology, Chengdu,
China, 2008

Merdan M., Moser T., Wahyudin D., Biffl S.:"Performance Evaluation of Workflow
Scheduling Strategies Considering Transportation Times and Conveyor Failures"; IEEE
International Conference on Industrial Engineering and Engineering Management,
Singapore; 2008

Merdan M., Moser T., Wahyudin D., Biffl S., Vrba P.:"Simulation of Workflow Scheduling
Strategies using the MAST Test Management System"; 10th International Conference on
Control, Automation, Robotics and Vision, Hanoi, Vietnam;.2008

Vrba P., Marik V., Merdan M.:"Physical Deployment of Agent-based Industrial Control
Solutions: MAST Story";IEEE SMC International Conference on Distributed Human-
Machine Systems (DHMS), Athens, Greece; 2008

Merdan M., Vittori L., Koppensteiner G., Vrba P., Favre-Bulle B.:"Simulation of an
ontology-based multi-agent transport system"; International Conference on
Instrumentation, Control and Information Technology (SICE), Chofu, Tokyo, Japan; 2008

Merdan M., Vrba P., Koppensteiner G., Zoitl A.:"Knowledge-based Multi-Agent Architecture
for Dynamic Scheduling in Manufacturing Systems"; IEEE International Conference on
Industrial Informatics (INDIN), Daejeon, Korea; 2008

Hegny I., Hummer-Koppendorfer O., Zoitl A., Koppensteiner G., Merdan M.:"Integrating
Software Agents and IEC 61499 Realtime Control for Reconfigurable Distributed
Manufacturing Systems"; IEEE 3rd International Symposium on Industrial Embedded
Systems - SIES 2008, Frankreich; 2008

Merdan M., Koppensteiner G., Zoitl A., Hegny I.:"Intelligent-Agent based Approach for
Assembly Automation"; IEEE Conference on Soft Computing in Industrial Applications
SMCia/08, 2008

Koppensteiner G., Merdan M., Hegny I., Weidenhausen G.:"A Change-Direction-Algorithm
for distrubuted Multi-Agent Transport Systems"; IEEE International Conference on
Mechatronics and Automation (ICMA), Takamatsu, Kagawa, Japan; 2008

Koppensteiner G., Merdan M., Zoitl A., Favre-Bulle B.:"Ontology-based Resource Allocation
in Distributed Systems using Director Facilitator Agents"; IEEE International Symposium
on Industrial Electronics, Cambridge, United Kingdom; 2008

Merdan M., Lepuschitz W., Hegny I., and Koppensteiner G.:„Application of a
Communication Interface between Agents and the Low Level Control” 4th International
Conference on Autonomous Robots and Agents. Wellington, New Zealand, 2009.

