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Kurzfassung

In dieser Arbeit behandeln wir das Thema der automatischen Generierung von stabilen
Demers Kartogrammen und Iso-Hexagon Kartogrammen. Ein Demers Kartogram/Iso-
Hexagon Kartogram ist eine Repräsentation von Daten auf einer Karte, in welcher alle
Länder als Quadrate/reguläre Sechsecke dargestellt werden und die assoziierten Daten
eines Landes die Größe diese Quadrats/regulären Sechsecks bestimmen. Diese Art von
Kartogrammen ist beliebt um Unterschiede zwischen der Größe eines Landes und anderen
georeferenzierten Daten aufzuzeigen, sowie um die Veränderung in diesen Daten über
einen gewissen Zeitraum hinweg zu visualisieren. In diesen Serien von Kartogrammen,
aber auch in einem Kartogram generell, ist es von größter Wichtigkeit das mentale Modell
des Betrachters so wenig wie möglich zu stören. Um dies zu erreichen, versuchen wir
stabile Demers Kartogramme und Iso-Hexagon Kartogramme zu erstellen, die gewissen
Quaitätskriterien—wie zum Beispiel benachbarte Regionen, wenn möglich, benachbart
zu halten—entsprechen. Wir präsentieren darüber hinaus NP-Hardness Beweise für
einige generalisierte Versionen der auftretenden Probleme sowie eine Methode, eine
verlorene Adjazenz zwischen benachbarten Regionen in einem Iso-Hexagon Kartogram
zu visualisieren. Und schließlich präsentieren wir eine experimentelle Auswertung unseres
Models.
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Abstract

In this thesis we approach the topic of automated generation of stable Demers cartograms
and iso-hexagon cartograms. A Demers cartogram/iso-hexagon cartogram is a represen-
tation of a data set on a map, which represents each country as a square/regular hexagon
and uses the associated data for every country to determine the size of this square/regular
hexagon. These kinds of cartograms are widely used to visualize discrepancies between
the size of a country and some other georeferenced data as well as to visualize the change
of a data set over time. In these series of cartograms, but also in a cartogram in general,
it is of vital importance to disturb the mental model of the user as little as possible.
In order to achieve this, we try to create stable sets of cartograms, which fulfill certain
quality criteria, like keeping as many adjacencies as possible. For this, we present an LP
formulation which can be used to create stable sets of Demers cartograms and iso-hexagon
cartograms. We further present a NP-hardness proof for a generalized version of some
of the problems and present a method of visualizing lost adjacencies in a iso-hexagon
cartogram. Finally we present an experimental evaluation of our model.
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CHAPTER 1
Introduction

When you look out of the window you can see a great deal in an instant. The
mind has an extremely powerful system for processing imagery, which can
instantly analyze a pattern of colors, of light and shade and know (or at least
think) that these are trees, houses or people out there. How long would it take
to describe all that you can see in words?
(Dimitris Ballas and Danny Dorling, 2011, [BD11])

In 1934, Raisz [Rai34] published “The rectangular statistical cartogram”. His goal was
to create economic maps, that showed the distribution of manufacturing sites like steel
factories, textile mills, power plants, etc., in the United States. His first approach was
to take a geographically accurate map, in which the value of every state was visualized,
exactly where the states lie on the map. This resulted in maps, that were too crowded
to be useful in the north-east of the US, where small states with high production rates
are densely packed, while other parts of the map, like the mountain states (Colorado,
Wyoming, Utah, New Mexico, Nevada, Idaho, Arizona and Montana), tend to be relatively
empty. The underlying problem is, that the size of a state (or country) does not necessarily
correlate with its economic production, population, GDP per capita and other data.
Raisz envisioned a map in which the area of a state is not defined by its actual real world
shape, but every state is represented by a rectangle with an area proportional to its data
value. Erwin Raisz’s solution was a cartogram.

Cartograms are now widely used. Results from United States elections are commonly
displayed in the form of a cartogram. The compact form and nice visual design make
them just as appealing to online and print media, as their possibility to combine political,
socioeconomic or in fact any data and their underlying geographical structure. Nusrat
et al. [NAK18] give an example, shown in Figure 1.1, which illustrates how big the
discrepancy between displaying information on a colored geographically accurate map—
which is called a choropleth map—and a cartogram can be. The example shows the
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1. Introduction

Figure 1.1: Geographic map and a cartogram for the 2004 US election [NAK18].

electoral vote distribution in the 2004 US presidential election. While the choropleth
map on the left suggest an overwhelming majority in votes for George W. Bush, the
cartogram on the right reveals the rather close result in relation to the electoral votes.
Cartograms are regularly used to illustrate skewed distributions (in relation to geography).
“World Mapper” created a cartogram in 2001 [Wor01] (Figure 1.2), which was heavily
featured in online media and stage talks, that displays the scientific contributions of
countries measured by the number of published scientific articles. The TED talk of Alisa
Miller [Mil08] used cartograms to illustrate sharp contrast between real world events and
the frequency of newspaper articles on these topics, and in the progress argued that this
can distort the view of the world. A recent entry from 2018 on World Mapper depicts
the occurrences of Ebola in different countries [Wor18].

Erwin Raisz’s cartogram is often a starting point when recalling the history of the
cartogram [Tob04], even though he is neither the first to use the term cartogram, nor is
he the first to create a map in which the area of a country is proportional to a desired value.
The earliest mention of a cartogram, as recalled by Friins [Fri74], is made by Charles
Joseph Minard in 1850. Several others used it to describe a statistical map [PW+32]
and choropleth or statistical maps [KDW86]. An early example of a map, in which such
proportional distortions are used, is “Grundys map” printed in the Washington Post in
November of 1929 [wPo29]. This “map of the United States showing the size of each
State on the basis of population and Federal Taxes” [wPo29] mostly keeps the shape of
the states, all adjacencies can be shown, but their relative size is radically changed.

Ballas and Dorling state that, “It is increasingly and convincingly argued that conventional
maps should not be used to map human data and that cartograms [...] should be used
instead” [BD11]. However they also mention that among the desirable properties of a
cartogram is the preservation of orientation and contiguity.

With this in mind we turn to an alternative way of representing countries, very similar to
the idea of Raisz [Rai34]. Regular polygons of desired size can be used to represent each
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1. Introduction

Figure 1.3: Levasseur’s map as reported
by Funkhouser [Fun37].

Figure 1.4: The social
watch map “The earth
should be blue” [Wat09].

country. Danny Dorling [Dor96] created his Dorling cartograms in an effort to reduce
border complexity, by using circles. “If, for instance, it is desirable that areas on a map
have boundaries which are as simple as possible, why not draw the areas as simple shapes
in the first place?” [Dor96]. And while a circle might be the simplest shape possible it is
not the only simple shape that can be used in such a cartogram.

An example of this is the oldest cartogram, we could find. It was created by Pierre Émile
Levasseur in 1870, as reported by Funkhouser [Fun37], even though Funkhouser did not
call this map a cartogram and in fact used the term cartogram to describe, what would
be called a cloropleth map today. In the cartogram, depicted in Figure 1.3, every country
is represented by a square, and the area of the square is proportional to the desired data
value. This is, in fact, an example, that invokes the visual design of a Demers cartogram
around 130 years before they were called Demers cartograms.

Similar to the Dorling cartograms [Dor96], the Demers cartograms use a fixed 2-
dimensional shape of variable size in order to represent a country in the cartogram.
However instead of using circles, it uses squares. The Demers cartograms were introduced
by Bortins and Demers [BDC02] in 2002 on their website “Cartogram Central”. The
map scales each country according to its population. Bortin and Demers argue, that,
due to the ability to be tighter packed than circles, the squares leave fewer gaps between
the regions. This makes for a more contiguous region [BD11]. The other mentioned
desired property of preserving orientation can also be met in the context of a Demers
cartogram and we will discuss this in a later section in this thesis. A third property,
which is beneficial to the essential use of a cartogram is comparability of regions. In this

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

YO SE

AZ

SB

OU

ME

SH

AK

40k10k

(a)

SB

AZ

ME

SH

OU
YO

AK

SE

10k

40k

(b)

SH

ME

OU

SB

AZ

YO

AK

SE

10k

40k

(c)

SH

ME

OU

SB

AZ

YO

AK

SE

10k

40k

(d)

Figure 1.5: Examples of map-based visualizations. (a) Choropleth map, (b) Dorling
Cartogram, (c) Demers cartogram, (d) iso-hexagon cartogram. The visualizations are
only exemplary.

area, the Demers cartograms are particularly outstanding, as anyone can differentiate
at first glance between squares of different size while, for example, rectangles can be
misleading since their perceived size can be heavily dependent on their aspect ratio. An
example of the usage of a Demers cartogram is produced in the form of an interactive
map on the website “Social Watch” [Wat09], of which an example screen can be seen in
Figure 1.4.

The Demers cartograms can be viewed as an adaption of the Dorling cartogram to a
different, but regular shape. The extension of the Demers cartogram to yet another
regular polygon comes natural. However instead of simply doubling the number of edges,
we opt for the regular hexagon. The reason for this lies again in the first mentioned benefit
of the Demers cartogram. The hexagon is the regular polygon with a maximal number of
corners, s.t., it still allows for a gap-free tiling of the two-dimensional plane. The octagon
makes this feat impossible. We therefore will look at cartograms in which every region is
represented by a hexagon of appropriate size. We will call these cartograms iso-hexagon
cartograms. A comparison of a standard cloropleth map, a Dorling cartogram, a Demers
cartogram and an iso-hexagon cartogram, all of which visualize a fictional data set on
Shibuya and its surrounding neighborhoods in Tokyo, can be found in Figure 1.5.

One common use, which we have already mentioned, is the use of cartograms to visualize
the continued development of information pertaining to a certain region of the world or
the world in total. Danny Dorling [Dor12] presents in an article in The Guardian a map,
that visualizes the “space and time trend of unemployment in Great Britain, 1978-1990”,
which uses the outer rings of the circles in a Dorling cartogram and shades them in
different colors to visualize change over the years. Cartograms are also commonly used in
interactive applications to visualize these kinds of data. The New York Times [Tim16]
created an interactive application that scales every country, i.e., the circle of a country as
this is a Dorling cartogram, proportional to the number of medals the won in a particular
instance of the Olympic Games. The user can browse through the years and see the
changes between the games. This was even done for Demers cartograms and again by
the New York Times [FHQ08]. In this application, rather than displaying the same kind
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1. Introduction

(a) (b)

Figure 1.6: Interactive application of the New York Times, depicting purchases of (a)
household goods and (b) recreational goods.

of data through time, they chose to put purchases of different goods made by countries
into perspective. In this application we want to point to the importance of relative
placement of regions. In Figure 1.6a we can see an example screen of the application
that shows purchases of household goods, in which the squares representing Austria and
Kazakhstan are placed as neighbors, with Austria to the left of Kazakhstan. When the
user switches to the screen that depicts purchases made in recreation (Figure 1.6b), this
relation drastically changes, with Kazakhstan now being adjacent to Japan and above of
Austria. Poland, which was previously placed below the square of Japan and to the left
of Russia, is now to the left of Japan and below Russia. This can potentially disturb the
mental image the user has of the world and possibly interfere with the comparability of
the two cartograms.

This thesis aims to present a method, which produces cartogram progressions, which
preserve the mental image of the user. In order to achieve this we approach this problem
first on a theoretical level in which we aim to relate the underlying algorithmic problems
to already existing problems in the literature, in particular how Demers cartograms
and iso-hexagon cartograms are related to the representation of a graph with touching
squares and regular hexagons, known as contact representations. We also present a linear
program model for the creation of Demers cartograms and iso-hexagon cartograms, as
well as a working implementation. In the next section we will present related work in the
area of cartograms and contact representations of graphs.

In Chapter 2 we present concepts, naming conventions and notation, which we will use
throughout the thesis. Highly specialized concepts, which are commonly only relevant to
a single chapter are sometimes presented in the chapters themselves.

In Chapter 3 we identify the underlying algorithmic problems of the creation of Demers
cartograms and iso-hexagon cartograms. We also prove NP-hardness for a generalized
version of the identified problems.

Next we present the theoretical model and optimization method, which is used to create
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1.1. Related Work

the desired Demers cartograms and iso-hexagon cartograms, in Chapter 4.

At points throughout this thesis, we will encounter problems of topography, namely that
countries, which are adjacent in reality, are not next to each other in a cartogram. A
method of handling this problem is to connect these regions with a curve. The question
whether and how this is possible is tackled in Chapter 5.

And finally we will describe our implementation and its usage in Chapter 6. We will
also present an experimental evaluation of the implemented application and discuss some
experimental extensions.

1.1 Related Work

In this section we present relevant related work in the areas of cartograms and contact
representation of graphs.

1.1.1 Cartograms

Next to the already mentioned formal definition of Raisz [Rai34], there are newer ones
by Heilmann et al. [HKPS04] and van Kreveld and Speckmann [vKS07]. Van Kreveld
and Speckmann also identify four different types of cartograms. A contiguous cartogram
deforms countries and enlarges or shrinks them to the desired size. Adjacencies can be
maintained, while accuracy in the shape of each country is sacrificed. Most automated
procedures to create cartograms focus on contiguous cartograms. Tobler [Tob73] presents
an early method to create “Rubber map cartograms”. Other examples of algorithms for
contiguous cartograms are Dougenik et al. [DCN85], Torguson [Tor90], Edelsbrunner and
Waupotitsch [EW97], Kocmoud and House [HK98], Keim et al. [KNP04], Gastner and
Newman [GN04] and Inoue and Shimizu [IS06].

The second category of non-contiguous cartograms shrinks down each country such that
relative sizes between countries are correct. Shape and size of a country can be realized
perfectly, while adjacencies between regions are generally lost. These cartograms are easy
to compute [NK16].

The third category, which are the already mentioned Dorling cartograms, can be auto-
matically created by a force-based algorithm [Dor96]. It uses forces, which ensure disjoint
circles by repelling overlapping circles away from each other, while trying to resemble
the topology of the original map by applying an attractive force that pulls the circles to
their original position. These forces are applied iteratively until the cartogram does not
contain any overlaps between circles. Demers cartograms were proposed by Ian Bortins
and Steve Demers on their website Cartogram Central [BDC02]. Even though Demers
cartograms are a variant of the Dorling cartograms, we did not find a scientific result,
which describes a similar force based method for them. Examples of similar force-based
implementations can however be found online [Giv16]. At this point, we do not know
of any publication which takes a closer look at Demers cartograms outside of Nickel et
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1. Introduction

al.[NSM+19]. There exists a sketch of a theoretical formalization as a linear program,
which creates stable Demers cartograms including the guarantee of keeping orthogonal
separations from the input in the output [CKM+18].

Raisz map [Rai34] falls into the fourth category of rectangular cartograms. These
cartograms use recursive subdivisions of a big rectangle to represent countries. The
first automated method of creating these cartograms was presented by Heilmann et
al. [HKPS04]. They use a genetic algorithm to evaluate multiple generations of cartograms.
Algorithms by van Kreveld and Speckman [vKS05, vKS07] create a starting cartogram,
based on the topology of a map. Then they move the horizontal and vertical segments of
the cartogram alternatingly in order to either reach the correct sizes or topology for all
countries. Speckmann at al. [SvKF06] present an alternative method to this heuristic by
using a linear program.

1.1.2 Contact Representation of Graphs

A Demers cartogram tries to represent adjacencies between regions correctly by placing
the corresponding squares next to each other. This has an obvious connection to the
concept of graph contact representations. A famous and central theorem of this area
is Koebe’s circle packing theorem [Koe36], which proves that every planar graph has a
representation in which all vertices of the graph are circles and two circles touch if and
only if the corresponding vertices were adjacent. This is a circle contact representation.
Hlineny and Kratochvil [HK01] present a survey of contact representations using disks
and balls. Contact representations can also represent countries with regular or non-
regular polygons and polytopes. In a proper contact representation the boundaries of two
polygons are required to share a segment of non-zero length. Duncan et al. [DGH+11]
prove that every planar graph has a proper contact representation with (non-regular)
hexagons but some planar graphs do not have such a representation with pentagons.

At this point we want to emphasize that the general question whether a graph has a
contact representation using a set of shapes is different from the problems considered in
this thesis, since we will assume a fixed size for every individual region while the while
in the classical contact representation problem the question is only if a representation
exists with arbitrary size of the shape of a vertex.

Bremner et al. [BEF+12] showed that deciding if a graph admits a proper contact
representation with unit cubes in 3D is NP-hard. They achieve this by modeling a logic
engine using cubes. This logic engine can encode an instance of Not All Equal 3-Sat

by creating a graph that admits a proper cube contact representation if and only if there
is a variable assignment which makes the instance true. Kleist and Rahman [KR14] used a
similar approach to model a logic engine with squares in 2D and proved the NP-Hardness
of deciding whether a given graph admits a proper square contact representation
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CHAPTER 2
Preliminaries

In this chapter we want to present some main concepts of graph theory and linear
programming, as well as the concept of drawing dimensions.

2.1 Graphs

All graphs considered in this thesis are undirected graphs. An undirected Graph G =
(V, E) consists of a (finite) set of vertices V and a (finite) set of edges E. Every edge
e ∈ E is a connection of two vertices v, u, defined as the unordered set e = {u, v}, where
u 6= v.

The vertices v, u are called adjacent and are being connected by e. The edge e is called
incident to v and u. A series of vertices p = [v0, v1, . . . , vk], s.t., ∀vi, vi+1 : {vi, vi+1} ∈ E,
is called a path or a chain of length k − 1 from v0 in to vk in G. If the graph exhibits
the property that that all pairs (u, v) are connected through a path, we call the graph
connected, otherwise we call it disconnected.

2.2 Linear Programming

Linear programming is an optimization method for continuous optimization problems.
Linear programming will be used to model several problems in this thesis. The modeling
and solution of linear programming problems is a subfield of computer science on its
own and we will not explore the methods which are used to solve a linear program—
detailed explanations can be found in the books of Shrijver [Sch98] and Bertsimas and
Tsitsiklis [BT97]—but only explain the general approach of modeling a problem to the
extend needed in this thesis. Surveys on the topic have been provided by Chandru and
Rao [CR10a, CR10b].

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. Preliminaries

A linear program, or LP for short, aims to maximize or minimize a given objective
function, subject to specified constraints. The formal definition is given below.

Definition 1 (Linear Program). Let A ∈ R
m×n be an m × n matrix b ∈ R

m and m-
dimensional vector and c ∈ R

n an n-dimensional vector. Then the corresponding linear
program is given as

minimize cT x

subject to Ax ≤ b

where x ∈ R
n is an n-dimensional vector of real variables.

A linear program is not restricted to minimizing an objective function or to constraints of
the form presented above. It can instead also maximize the objective function. Constraints
can also specify Ax = b or Ax ≥ b. All types of constraints can be used simultaneously
as they can be transformed into constraints of the other form. However all constraints
must be at all times linear inequalities or equalities.

The set of all possible value combinations is called the solution space. The linear
constraints restrict the solution space to a feasible region. Every solution contained in
the feasible region is a valid solution. Conversely an empty feasible region results in an
unsolvable or infeasible LP.

The aim of the LP optimization is to maximize or minimize the objective function (which
is dependent on the variables in the LP) over all valid solutions. This can be done
efficiently by exploiting the shape of the feasible region.

The design of the LP model includes the specification of a set of variables and constraints
which are supposed to capture the requirements and optimization goals of a problem. This
model is than solved. Multiple methods for finding an optimal solution for an LP exist.
Among those are the simplex algorithm [Dan51] and Karmakars polynomial-time interior
point method [Kar84], which are both used in practice. The commercial optimization
tool IBM ILOG CPLEX, which can be used to model and solve an LP, is regularly used
in industrial settings. An LP can in general be solved in polynomial time.

2.2.1 Mixed Integer Programming

A linear program can be solved in polynomial time, which makes it very appealing as
a optimization method. But some restriction are inherent to the linear program. One
important feature is that all variables in a linear program must be real variables. This
means we can not express the constraint that a variable must be an integer number for a
solution to be valid. This is possible in a variant of the linear program called the mixed
integer program, in which we can require a subset of variables to be element of the integer
numbers.
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2.3. Distance Metrics

Definition 2 (Mixed Integer Program). Let A ∈ R
m×n be an m × n matrix b ∈ R

m and
m-dimensional vector and c ∈ R

n an n-dimensional vector. Let J ⊆ {1, 2, . . . , n}. Then
the corresponding mixed integer program is given as

minimize cT x

subject to Ax ≤ b

xj ∈ Z ∀j ∈ J

where x = (x1, x2, . . . , xn) ∈ R
n is an n-dimensional vector of real variables.

The important difference between a linear program and a mixed integer program is,
that finding an optimal solution for a mixed integer program is NP-hard, even though
modern optimization tools like the IBM ILOG CPLEX optimization studio can solve
mixed integer programs reasonably fast. We will only use an mixed integer program in
Section 6.3, in which we present some experimental extensions to the program, but it
should nevertheless be stated that requiring variables in linear program to have integer
(or boolean) values can lead to significantly increased runtimes.

2.3 Distance Metrics

L1-Norm

L∞-Norm

1

Figure 2.1: Unit circles for the Eu-
clidean (green), the L1- (blue) and
the L∞-Norm (red).

The distance of two points p = (xp, yp), q = (xq, yq)
in the Euclidean plane is normally quite intuitively
defined as the Euclidean distance of p and q. This
definition of distance is also referred to as the Eu-
clidean norm and is defined as follows.

d(p, q) =
√

(xq − xp)2 + (yq − yp)2

Since this calculation has the necessity of both
squaring and taking the root of something, it is
not suitable for usage in a linear program, as ex-
plained in Section 2.2. There are, however several
other ways to define the distance of two points. In
this thesis we will make use of both the L1 and the
L∞ metric which are defined next.

As the unit circle is defined as the set of all points with distance 1 from the origin of a
coordinate system, we can draw unit circles for different metrics. The unit circles for the
Euclidean norm as well as for both the L1 and the L∞ metric are displayed in Figure 2.1.
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2. Preliminaries

2.3.1 L1 Metric

The L1 metric, which also called the Manhattan distance and the sum norm is defined as
the sum of the differences in both the x- and y-dimensions. Formally the distance of two
points p, q in the L1 metric is defined as follows.

d(p, q) = |xq − xp| + |yq − yp|

This metric is commonly explained by imagining the navigation on a regular street grid
with square housing blocks, as they can be found in more modern cities in the US. If
one would try to get from, e.g., 10th and 74th street to the corner of 14th and 68th street
in Brooklyn, NY, it does generally not matter if you walk down 10th avenue up to the
intersection with the 68th street and then down 68th street up to the destination, if you
first walk down 74th street or if you take a combination of alternating left and right turns
in between the two points. The distance is the same, i.e., 6 streets down plus 4 avenues
across.

Note that the calculation of this metric does not involve squaring or the taking of a
root. It does entail the calculation of an absolute value, which can be done in a linear
program. If an absolute value is required to be smaller than a given threshold value,
we can reformulate this into two constraints requiring bothe the positive and negative
value to be smaller than the threshold. Similarly we can require both to exceed a certain
threshold value to ensure an absolute value bigger than the threshold. It is therefore
possible to calculate an L1 distance in a linear program.

2.3.2 L∞ Metric

In the Euclidean norm, changes in the coordinate with the bigger difference between
the two points p, q has a bigger impact on the distance than changes in the coordinate
with the smaller difference. The L∞-metric in takes this to the extreme in a sense. The
distance between two points is exclusively defined by the difference in the dimension
which has the biggest difference. Formally this means:

d(p, q) = max(|xq − xp|, |yq − yp|)

It is important to note that in using the L∞-metric, two touching squares a, b have a
distance of exactly wa+wb

2 , where wa and wb are the edge lengths of the two squares.
The placement of the two squares is irrelevant. Note that this does not happen for the
L1-metric.

2.4 Drawing Dimensions

At multiple times throughout this thesis we will refer to the drawing dimensions of a
cartogram. This refers to either the commonly used x- and y-dimensions in a Cartesian
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2.4. Drawing Dimensions

z0

z1
z2

z
o

0

z
o

1

z
o

2

Figure 2.2: Additional drawing dimensions z0, z1 and z2 for the iso-hexagon cartograms.
As can be seen in the figure, the orthogonal directions must be explicitly expressed as
none of the three dimensions are orthogonal to each other.

coordinate system, in case of the Demers cartograms or to a new set of directions z0, z1

and z2, in case of the iso-hexagon cartograms. These directions are defined as follows.
The z0-dimension is the same as the x-dimension. Similarly to the y-dimension which
is placed at a 90◦ rotational offset to the x-dimension, the z1-dimension is placed at
a 60◦ offset to the z0-dimension and the z2-dimension is placed at a 120◦ offset to the
z0-dimension. We will denote the coordinate of a point p in drawing dimension d as d(p).

We will also talk about the orthogonal directions to these dimensions. Note that in case of
the Demers cartograms, the y-direction is by definition orthogonal to the x-direction and
vice versa. This is not true for the z-directions, as can be seen in Figure 2.2. Therefore
we introduce a set of direction zo

0, zo
1 and zo

2, s.t., zo
i is orthogonal to zi and vice versa.

A line l is called orthogonal to a dimension d if all points on l have the same d-coordinate,
i.e., ∀pl, p′

l ∈ l : d(pl) = d(p′
l). Similarly we define a line being parallel to a drawing

dimension d.

We will use the drawing dimensions to specify locations of points. The d-coordinate d(p)
of a point p is determined by drawing a line through p orthogonal to d. All points on
this line, including p, have by definition the same d-coordinate.

Note that in contrast to the x- and y-dimensions, the z-dimensions are linearly dependent,
i.e., we can define a point p by only two z-coordinates which fixes the third one. Moreover
we can and will express all z-coordinates of a point as a combination of the x- and
y-coordinates of that point. These drawing dimensions are introduced to enable us to
argue more intuitively about the directions in an iso-hexagon cartogram.
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CHAPTER 3
Problem Description and

Complexity

In this chapter we want to identify the problem statements relevant to this thesis and
define them formally. We will also present two reductions that prove the NP-hardness of
some of the defined problems.

3.1 Drawing Demers Cartograms

For the purposes of this thesis we define a Demers cartogram as set of non-rotated
interior-disjoint squares R, a placement function pos : R → R

2, which specifies the
placement of the center of a square and a weight function w : R → R that specifies the
desired area of a square. A iso-hexagon cartogram is defined similarly, but R is now a
set of non-rotated interior-disjoint hexagons. Interior-disjointness is enforced, since with
increasing overlap of regions, regions might completely obfuscated. Even if lower opacity
values are used, i.e., the regions are to a degree transparent, they can become hard to
differentiate. Examples of this can be seen in Figure 3.1. We will use squares/hexagons
and regions interchangeably to refer to the squares or hexagons in a Demers cartogram
or iso-hexagon cartogram.

3.1.1 Directional Relations

Preserving relational placement of regions inside a cartogram can be enforced as an
additional requirement for a Demers cartogram or a iso-hexagon cartogram.

If a country lies in reality to the west of another, but the corresponding square of that
country is placed to the left, i.e., east of the square of the second country, then this might
be very confusing and hindering in finding and comparing countries in the cartogram.
An example of this is displayed in Figure 3.2.
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3. Problem Description and Complexity

(a) (b)

Figure 3.1: Overlapping regions can obfuscate the cartogram such that it is difficult to
differentiate between countries. (a) Drawing partly transparent regions does not solve
this problem sufficiently and neither does (b) adding different colours to the regions.

In order to avoid this problem, we will identify so called separation constraints. A
separation constraint is a set of pairs of regions. Depending on the type of cartogram we
can identify either two (Demers cartogram) or three (iso-hexagon cartogram) separation
constraints. This is dependent on the number of drawing dimensions which are available
for that type of cartogram. For a Demers cartogram we define the separation constraints
Sx and Sy, with the associated drawing dimensions x and y respectively. In a iso-hexagon
cartogram the separation constraints are S0, S1, S2, again with their associated drawing
dimensions z0, z1 and z2 respectively. If a pair (r1, r2) of two regions is element of a
separation constraint S, we require this separation constraint to be fulfilled. This means
that they must be separated in the drawing dimension d, which is associated with the
constraint, i.e., we can draw a line l orthogonal to the dimension d, s.t., l is disjoint from
the interiors of both r1/r2 and r1 and r2 lie on different sides of that line. Note again
that l can coincide with the boundary of the squares of r1 and r2 and actually has to
coincide with both in order to allow r1 and r2 to be adjacent. We call l the separating
line of r1 and r2.

Note that the perceived relative direction of countries on a map is non-trivial. There
are multiple methods of determining this relationship. Buchin et al [BKS+11] compare
different methods of determining the relative placement of two regions and propose a
new splitting line model. The method used by us is called the centroids model. We chose
this model despite the results of Buchin et al. due to the fact that separation constraints
must be symmetrical, which their splitting line model is not. We will explain this model
in detail in Chapter 4.

We can define a strong setting, in which we add a pair of regions to both separation
constraints, based on their properties in the input. If not otherwise specified we will
however assume, that we are talking about the weak setting, in which every pair of regions
is in exactly one separation constraint. “Two regions are in a separation constraint” and
“Two regions have a separation constraint” are used interchangeably.
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3.1. Drawing Demers Cartograms
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(a)
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(b)
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AUT

(c)

Figure 3.2: Directional relations should be kept in a cartogram, (a) is an input map in
which we can identify directional relations like “Poland is to the right of Germany”, (b) is
a Demers cartogram which keeps these directional relations (in general), while (c) violates
a number of them and leads to a worse cartogram. In the cartograms, Luxembourg is
not labeled due to space constraints.

3.1.2 Desired Properties of a Good Cartogram

In this section we want to list the quality criteria, which are desired in a “good” cartogram.
In a practical application, these are the properties, which are maximized. These properties
can however stand in conflict with each other. It is therefore necessary to choose weights
that relate the properties to each other and make them comparable.

The first property is, that areas which are adjacent are kept adjacent and those that
are not, are not placed next to each other in a cartogram. We call the first “keeping
adjacencies” and the second “not creating new adjacencies”. An easy real life example
that illustrates that this constraint is not trivial is the placement of the countries Brazil,
Argentina, Bolivia and Paraguay as illustrated in Figure 3.3.

This constraint is something that can be fulfilled partially, but it is worth mentioning
that the number of lost adjacencies can obviously only ever be an integer number. This
is relevant in for reasons mentioned in Section 2.2. The goal behind keeping adjacencies
and not creating new adjacencies is to create analogies between the input map and the
cartogram that aid the user in locating and identifying countries in the cartogram.

By ensuring the separation constraints are kept, we already restrict the placement of
squares relative to each other. However, since we identify only one direction in which
we guarantee the separation constraint, e.g., region a must be placed completely to the
right of region b, the y-coordinate of b is not fixed and therefore the region can be placed
anywhere from the lower to the upper boundary of the drawing area. One method to fix
this is to try to keep the slope of the line through the two centers of a and b as close as
possible to the slope of the line through their centroids in the input.

It can also be helpful to keep the original position of regions in the cartogram. This is
achieved in minimizing the distance of the center point of a square to the position of the
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3. Problem Description and Complexity
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(a)

PRY

BRA
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BOL

(b)

BRA

BOL

PRY

ARG

(c)

Figure 3.3: Regardless of the sizes assigned to the countries in the Demers cartogram
(b), the adjacencies defined in the input map (a) cannot be kept. Note that, for this
configuration, this is not true in a iso-hexagon cartogram (c).

centroid in the input. This tries to keep the original shape of the map. The distances
can be measured with the metrics described in Section 2.3.

3.1.3 Formal Description

We are now prepared to present formal problem description of the Demers cartogram
problems. We will present two different problems in this section. One is a question of
existence, i.e., is there a Demers cartogram for a set of regions that keeps all adjacencies
without creating new ones and the other is minimization problem in which we try to
minimize the number of lost adjacencies.

Problem 1 (Demers Cartogram Existence Problem). Given an adjacency Graph G with
a planar embedding and separation constraints Sx, Sy and a weight function w, does there
exist a Demers cartogram which draws all regions r ∈ R as squares of size w(r), keeps
all adjacencies and fulfills all separation constraints?

The adaption of this problem into a minimization problem is done by allowing for lost
adjacencies, but adding them as an optimization goal. The formal description of this
problem is as follows.

Problem 2 (Demers Cartogram Minimization Problem). Given an adjacency Graph G
with a planar embedding and separation constraints Sx, Sy, and a weight function wi.
What is the minimal number of lost adjacencies over all possible Demers cartograms, which
draws all regions r ∈ R as squares of size w(r) and fulfills all separation constraints?
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3.2. Drawing iso-hexagon cartograms
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(a)
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(b)
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Sendagaya

(c)

Figure 3.4: (a) Input map of Tokyos municipality Shibuya and its 7 surrounding mu-
nicipalities. Assuming all regions have equal size, this map can not be turned into a
iso-hexagon cartogram without losing at least a single adjacency, neither with a dense
packing (b) nor by loosening the packing (c).

3.2 Drawing iso-hexagon cartograms

A iso-hexagon cartogram is an adaptation of a Demers cartogram. Instead of representing
every region with a square, we represent them with regular hexagons. Most of the
concepts of the Demers cartograms are directly applicable to the iso-hexagon cartograms.

Problem 3 (Iso-Hexagon Existence Problem). Given an adjacency Graph G with a
planar embedding and separation constraints S0, S1 and S2 and a weight function w, does
there exist a iso-hexagon cartogram which draws all regions r ∈ R as regular hexagons of
size w(r), keeps all adjacencies and fulfills all separation constraints?

Problem 4 (Iso-Hexagon Minimization Problem). Given an adjacency Graph G with
a planar embedding and separation constraints S0, S1 and S2 and a weight function w.
What is the minimal number of lost adjacencies over all possible iso-hexagon cartograms,
which draws all regions r ∈ R as regular hexagons of size w(r) and fulfills all separation
constraints?

3.3 Leader Lines

Let G be the adjacency graph of the input map. G has a planar embedding. As already
mentioned, even with a planar embedding given, we might not be able to keep all
adjacencies of the input, if all regions have fixed size. Examples for necessarily lost
adjacencies can be seen in Figure 3.3b for the Demers cartograms and for a iso-hexagon
cartogram in Figure 3.4.

These lost adjacencies are nevertheless informative to the user and we can try to mitigate
the impact of lost adjacencies by visualizing them through curves connecting the two
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3. Problem Description and Complexity

regions. We will call such a curve, a leader line and we will place specific restrictions on
them in order to integrate them into the specific design of the cartogram. Relating to
these leader lines we can pose an additional problem.

Problem 5 (Leader Line Existence Problem). Given an adjacency Graph G with a
planar embedding and separation constraints S0, S1 and S2 and a weight function w.
Assuming that there exists a hypothetical Cartogram A in which all regions are realized
with a polygon of correct shape and arbitrary size and all adjacencies and separation
constraints are fulfilled, can we always find a Cartogram B in which all regions r ∈ R are
represented by polygons of correct shape and and area of w(r) and all adjacencies can be
visualized with a leader line of bounded length, such that, this line and all regions except
the ones it is connecting are disjoint?

We will give a proof of the existence of such a leader line and a bound in relation to the
placement of the regions the line is connecting in Chapter 5

3.4 Hardness

In this chapter we want to prove the NP-completeness of a generalized versions of the
problems 1, 2, 3 and 4. For the first two, we will first pose a rephrased version of the
problems, and then follow a chain of results already proven in other papers to establish
NP-completeness. For the iso-hexagon cartogram problems, we will give a reduction that
mimics a similar reduction already used in the other papers.

3.4.1 Generalization

A Demers cartogram without lost adjacencies is clearly a square contact representation
of the adjacency graph. However, as already mentioned, due to the fixed sizes of the
regions, the existence problems are not equivalent. If we set all weights of the regions
to the same value and drop the necessity of the separation constraint we can state the
following generalized problem.

Problem 6 (Proper Square Contact Representation). Given a Graph G = (V, E), is
there a set of unit squares S, s.t., there is a bijective function f : V → S, all pairs of
squares f(u) = a, f(v) = b are in contact if and only if a and b share a boundary segment
of non-zero length?

The same can be done for the iso-hexagon cartogram and the proper hexagon contact
representation. However we need to augment the problem instance to include a weight
function as the proof of NP-hardness requires hexagons of fixed but different sizes, but
we are able to drop the necessity for a proper contact representation.

Problem 7 (Hexagon Contact Representation). Given a Graph G = (V, E) and a
function w : V → R, is there a set of hexagons H, s.t., there is a bijective function
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3.4. Hardness

f : V → H, s.t., the size of hexagon f(v) is exactly w(v) and all pairs of hexagons
f(u) = a, f(v) = b are in contact if and only if {u, v} ∈ E?

The minimization problems are similarly defined, but allow for lost adjacencies. The
problem then asks for the minimal possible number of lost adjacencies.

3.4.2 NP-Completeness of Proper Square Contact Existence

Problem 6 has been shown to be NP-complete by Kleist and Rahman [KR14], as a
secondary result in a paper about cube representation of graphs. They achieve this by
building a logic engine with unit squares similar to the ideas of [BEF+12] and with that
reducing Not All Equal 3-Sat to the proper square contact representation problem.

Theorem 3.4.1 (Consequence of [KR14]). The Proper Square Contact Existence problem
is NP-hard.

3.4.3 NP-hardness of Proper Square Contact Minimization

Theorem 3.4.2. The Square Contact Minimization problem is NP-hard.

Proof. We will show NP-Hardness for the corresponding minimization problem, by
reducing the existence problem to the minimization problem. This is done straightforward.
Given an instance of Problem 6 we can use it as is as the instance of the minimization
problem. Assume there exists a polynomial time algorithm for the square contact
minimization problem, then we could simply solve the instance. If the resulting answer
is 0 we return true, otherwise we return false, since a minimal number of lost adjacencies
bigger than zero makes the existence of a proper square contact representation without lost
adjacencies impossible. Since Problem 6 is NP-complete, we know that the minimization
problem is NP-hard.

3.4.4 NP-Hardness of Hexagon Contact Existence

We replicate the construction of a logic engine as done by Kleist and Rahman [KR14],
however instead of unit-squares, we will use hexagons of varying but fixed sizes as building
blocks. We will first present the Not All Equal 3-Sat problem, then explain the
underlying structure of the construction, we will explain how all parts of this structure
are replicated using hexagons, discuss why the construction is rigid (for all intents and
purposes of this problem) and finally we will give a high level overview of the complete
reduction.

Not All Equal 3-Sat

Sat is famous for being the first problem for which NP-completeness was proven by
Cook [Coo71]. It is the problem of finding a satisfying variable assignment for a given
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3. Problem Description and Complexity

boolean formula ϕ. It is also a popular starting point for reductions to other problems,
since there exist various restrictions to the Sat problem which remain NP-complete.

One of these adaptions is Not All Equal 3-Sat or NAE3Sat. An instance of
NAE3Sat consists of a boolean formula ϕ in 3-CNF Form. A formula ϕ is in 3-CNF
Form, if it consist of a set of clauses, which are all connected by a ∧-operator and every
clause consists of at most 3 literals which are connected by a ∨-operator. The formula ϕ
in 3-CNF Form is a positive NAE3Sat instance, if and only if there exists a variable
assignment, which makes ϕ true and every clause contains at least one literal which is
false under the variable assignment.

The formal problem description of the NAE3Sat problem is given below.

Problem 8 (Not All Equal 3-Sat). Let ϕ = (V, C) be a formula, V = {v1, v2, . . . , vn}
be the set of all variables in ϕ, C = {c1, c2, . . . , vn} be the set of all clauses in ϕ and let a
clause c ∈ C be a set of variables, s.t. ∀c ∈ C : |c| ≤ 3. Decide if there exists a variable
assignment I, s.t.,

I(ϕ) = true

∀c ∈ C∃v ∈ c :

{

I(v) = false if v ∈ c

I(v) = true if ¬v ∈ c

The NP-completeness of this problem can easily be shown by reduction from 3-Sat and
was used by Bremner et al. [BEF+12] and by extension Kleist and Rahman [KR14].

Proof using a Logic Engine

Theorem 3.4.3. The Hexagon Contact Existence problem is NP-hard.

Proof. A logic engine is a graph, in which we can map certain parts of the graph to
components of a logical formula. The construction of the logic engine directly follows the
description by Bremner et al. [BEF+12]. The engine consists of a central horizontal spine.
For every variable in V , we will attach two poles to this central spine, one above and one
below the spine. All n poles are placed from left to right in equal distances. Every pole
consists of m connection points, one for each clause, which we call clause components.
The entirety of this logic engine is then surrounded by a frame, which is multiple vertices
thick in order to make it impossible for parts of the frame to shift independently of the
rest of the frame.

We initially place n + 1 non-connected vertices from left to right on a horizontal line.
These vertices will build the spine. The poles consist of m copies of the three vertices
p1, p2, p3, s.t., p1 − p2 and p2 − p3 are connected. These vertices are a clause component.
The p3 of every clause component is connected to the p1 of the next. We build two such
poles for every variable. We will call one the positive pole and the other the negative
pole. The j-th poles, i.e., the poles for variable vj are placed, s.t., the p1 of their first
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3.4. Hardness

components are connected to the j-th and (j + 1)-th vertex of the spine, as well as to
each other. By placing n pairs of poles, we connect all vertices of the spine. Furthermore
every pole can be drawn above or below the spine, independently of the other poles
(except its opposite pole).

The frame consists of 6 chains of vertices placed above, below, to the left and to the right
of the already constructed parts. The two chains, placed above and below, consist of
3 · (2n + 3) vertices, while the four chains on the sides consist of 3 · (3m) vertices (which
is the same number of vertices as in a negative or positive pole for a variable). The left
and right ends of the chains above and below are connected each to one end of a chain
on the side with 4 additional vertices. The other ends of the two chains on the left are
connected to the first vertex of the spine and conversely the other two chains on the
right are similarly connected to the last vertex of the spine. Additionally we connect, the
two side chains on the same side with one additional vertex, each. The entirety of the
construction up to this point is depicted in Figure 3.5a on the next page.

The central idea of this construction is that every pair of poles, represents one variable.
One pole represents the variable as a positive literal while the other represents the variable
as a negative literal. For a variable vi we will call the first pole o+

i and the second o−
i .

Let tk be the k-th clause component in a pole. The set of all k-th clause components
over all poles represents the k-th clause of the formula. If and only if a variable vi does
not occur as a positive literal in clause k, we attach a flag vertex to vertices p2 and p3

of the k-th clause component of o+
i . Conversely we attach a flag vertex to vertices p2

and p3 of the k-th clause component of o−
i if and only if vi does not occur as a negative

literal in clause k.

A variable vi is thought of as true, if o+
i is place above the spine and therefore above o−

i ,
otherwise its thought of as false. Let pf , p′

f be flag vertices adjacent to the k-th clause
component of two adjacent poles. The size of the hexagons representing pf and p′

f is
chosen in such a way, that only one such hexagon can ever be drawn simultaneously in
the space between the two adjacent poles. The space between the frame and the outer
poles will be restricted , s.t., no flag vertex can be drawn in this space. This means that
we need at least one k-th clause component over all poles above the spine without a flag
vertex attached, in order to have enough space to draw all flag vertices on that level.
Conversely we need a similar clause component for every row of clause components below
the spine. Therefore we can relate a clause component above the spine without a flag
vertex—which enables the k-th level of clause components above the spine to draw their
flag vertices—to a variable which makes the k-th clause true. This can either mean, the
variable itself is true and its positive pole is drawn above the spine or the variable is
false and its negative pole is drawn above the spine. In the same way tje k-th clause
component without a flag vertex below the spine can be related to a variable that is false
in the k-th clause.

At this point the central idea of the reduction is complete and we know that every formula
that can be fulfilled can be drawn as a hexagon contact representation with the given
weights. There are however still drawings of graphs that relate to formulas which can
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3. Problem Description and Complexity
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3.4. Hardness

1

2

1

2
− ε

ε

2ε

1− 2ε

1

(a)

(b)

Figure 3.6: Detailed construction of the spacer chains. The spacer chains are connected
to the spine and consist of hexagons of 4 different sizes. The first are hexagons of height
1 − 2ε. They are connected to the spine (a) and the frame (b) with small hexagons of
height ε. Two of these big hexagons are connected by a small one of height 2ε. The
empty pockets between the poles in which a flag hexagon might be drawn, contain two
hexagons of height 1

2 , which are connected to a big hexagon by a small one of size ε.

not be fulfilled, due to the fact that the poles are not forced to be drawn in a straight
line. More precisely, we want to guarantee that in a pole, a hexagon is connected to the
previous and the successive hexagon through opposing sides and that we are not able to
move hexagons so far along these edges that we create enough space between the poles
for two flag variables to be drawn on one level.

To guarantee this, we want to make this construction rigid, in a sense. We will place
chains of vertices between the poles (so called spacer chains), which are not adjacent
to the poles but only to the spine in order to retain the possibility to flip the poles
independently from each other to the other side of the spine. Further we will scale all
components of these spacer chains, s.t. the distance between the components and the
poles is minimal, in order to limit movement. The composition of such a spacer chain
and the relative sizes of all components of the spacer chain are displayed in Figure 3.6a.

The spacer chains are connected at the top to the lower points of the top end of the
frame, as shown in Figure 3.6b. The two smaller hexagons of height 1

2 can be drawn
simultaneously to a hexagon of a flag vertex in their pocket, but not simultaneously to
two flag vertex hexagons in the same pocket. At the same time we can not draw the
two hexagons of height 1

2 and the next hexagon of size 1 − ε in the same pocket, since ε
is chosen as small as necessary to make this impossible. The space between the frame
and the outer poles is filled up as shown in the example in Figure 3.7, blocking all flags
from being placed outside the outer poles. This also entails that we can never use an
empty pocket in a level of clause components to draw parts of a pole into it, in order to
make space in a level further up the pole, making it in turn impossible to draw a level
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3. Problem Description and Complexity

Figure 3.7: Complete construction for formula ϕ, including the correctly placed flag
hexagons in dark green. The construction is rotated to the right, i.e., the right side is
the top.

of clause components which all have a flag vertex attached, by changing their height in
the drawing. The final construction including all spacer chains and all flag hexagons for
the satisfiable formula ϕ (defined below) is shown in Figure 3.7. An exemplary variable
assignment I that satisfies ϕ is I(x1) = f, I(x2) = f, I(x1) = f, I(x4) = t.

ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (x4 ∨ x3 ∨ ¬x1) ∧ (¬x4 ∨ x3 ∨ ¬x2)

Assume, that a formula ϕ has a variable assignment I which fulfills ϕ, s.t., every clause
contains a literal, which is false. Then a drawing of the constructed graph exists, if the
poles are rotated in such a way that o+

i is drawn above the spine if vi is true under I
and below the spine otherwise, in which case o−

i is drawn above the spine. Since ϕ is
satisfied under I, the k-th clause contains a literal which is true. If this literal is positive,
the variable if true, o+

i is drawn above the spine and the k-th clause component does not
have a flag vertex attached which enables all k-th clause components above the spine to
draw their flag vertices. This holds for all k ∈ [1, m]. Since every clause also contains a

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.5. Quality Measurements

literal which is false, this also holds for all poles below the spine.

Assume now, that the constructed graph has a hexagon contact representation with
the given fixed sizes. Then every pole could draw every connected flag vertex as a
hexagon without overlap or creating new adjacencies. The existence of the spacer chains
introduced hexagons between the poles, which are not adjacent to the poles but have a
very small distance of ε. This forces all poles to be drawn in such a way, that all hexagons
of the pole are connected to each other through their opposite sides. We can shuffle the
hexagons minimally to the right and left, but the maximal displacement between one
hexagon and the next is smaller than 4(n + 1) · ε, since we can at most shuffle one row
of hexagons completely to the left, and the next completely to the right by at most the
distance between a spacer chains biggest component and the pole times the number of
spaces between the spacer chains and the poles (including the space between the spacer
chain and the frame). Since we need to shift two hexagons with an edge length of 1 at
least 1

2 to the side, in order to create a connection through a different edge, we can clearly
chose ε small enough to prevent this. This means that all k-th clause components are
drawn at the same height. From that we can follow that at least one of the k-th clause
components above the spine and at least one below the spine do not have a flag hexagon,
since that would make a drawing impossible. Let the pole of the clause component, which
enables this above the spine be the i-th pole. If this pole is o+

i we set vi to true, otherwise
we set it to false. This results in a satisfying variable assignment since the poles o+

i /o−
i

are drawn either completely above or completely below the spine. This concludes the
proof.

3.4.5 NP-hardness of Hexagon Contact Minimization

Theorem 3.4.4. Hexagon Contact Minimization is NP-hard.

Proof. This proof follows the same argument as the proof for the proper square contact
minimization. We again use the same instance, run an algorithm, which solves the
hexagon contact minimization and return true if the answer is zero and false otherwise.
Due to the proof above, hexagon contact minimization is NP-hard.

3.5 Quality Measurements

We want to be able to judge a cartogram or a set of cartograms. For that we will use
different measurements, some of which were developed for treemaps. The similarities
between treemaps and cartograms were pointed out in Chapter 1.1.

Nusrat et al. [NK16] identified three general quality criteria for a cartogram, namely
statistical, geographical and topological accuracy. We present our measures for the
applicable quality criteria, as well as measures for an additional criteria we call stability,
which tries to capture how two cartograms relate to each other.
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3. Problem Description and Complexity

3.5.1 Statistical Accuracy

Statistical accuracy measures the difference between the size a representation of a
region should have in a cartogram and its actual size. The difference is commonly
called cartographic error and is by definition of the Demers cartogram and iso-hexagon
cartogram not a relevant factor since all regions are represented by a polygon of exact
and fixed size.

3.5.2 Geographical Accuracy

Geographical accuracy measures how closely the cartogram resembles the input map.
This is judged by how much the shape and position of a region in the cartogram resembles
the shape and position in the input. The first is not applicable in this setting since the
shape of a region is fixed and cannot differ. The second can be measured as the average
displacement of a region from its origin. Let o(r0) be the original position of a region in
the input and let o′(r0) be the center of the polygon of the region in cartogram P . Then
the origin displacement δo is defined as

δo =
|o(r0) − o′(r0)|

CBB

This measure can clearly be used for both the Demers cartograms and the iso-hexagon
cartograms. CBB is the maximum over the length of the two diagonals of the bounding
boxes of the input and P . We divide δo by this large constant to obtain a value between
0 and 1, since the full diagonal of the bigger layout is the maximal distance, a square
could travel. In practical applications, the values tend to range between 0 and 0.3.

3.5.3 Topological accuracy

Topological accuracy captures how well the input topology is represented in the cartogram.
This relates to the adjacencies between regions and will be measured by the number of
supposedly adjacent regions which are not actually adjacent in the Demers cartogram
or iso-hexagon cartogram. This calculation of lost adjacencies is done after creating the
cartogram by using the following formula for two squares s1, s2.

adj(s1, s2) =

{

true if max(δx, δy) < w(s1)+w(s2)
2

false otherwise

The measurement can easily be adapted to two hexagons h1, h2.

adj(h1, h2) =

{

true if max(δ0, δ1, δ2) < w(h1)+w(h2)
2

false otherwise

The δd variables are the distances between the centers of two polygons in the relevant
drawing dimension d. Note that we do not measure the number of newly created
adjacencies, as our method does not allow for that to happen.
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3.5. Quality Measurements

S1

S2S3S4

S5

S6 S7 S8

b

a

Figure 3.8: One third of b is in Sector S1 of a, two thirds in S2.

3.5.4 Stability

Additionally we want to measure not only the quality of a single cartogram, but of a
set/series of cartograms and how stable two cartograms are in relation to each other.
Stability of such a pair tries to capture how much the mental model of the user is
disturbed, when switching from one cartogram to the other. Small changes in the input
should result in small changes in the output and vice versa. Note that due to changing
data values the size and position of a region is almost always forced to change from one
cartogram to the next, however some movements are considered to be worse than others,
i.e., moving a region b which was to the right of region a slightly more to the right can be
expected to keep the mental image of the user better than flipping b to the left side of a.

We will employ different measures to capture stability. The first is stability score of
Sondag et al. [SSV18]. The score splits the surrounding area of a rectangle a into 8
sectors, defined by the lines going through its sides. It then measures the fraction of a
second region b that is in each sector of a. Figure 3.8 shows an example of that. The
result is an 8-dimensional vector βab = [β1

ab, . . . , β8
ab], s.t., βi

ab is equal to the fraction of b
that is in Si of a. Let a, b be the squares of two regions ra, rb in a Demers cartogram P
and a′, b′ be the squares of ra, rb in a second Demers cartogram P ′. The relative position
change of ra, rb from P to P ′ is calculated as

CP P ′(ra, rb) =
1
2

· ||βab − βa′b′ ||1

The stability score of two cartograms P and P ′ is defined as

SP P ′ =

∑

i6=j CP P ′(ri, rj)

n − 1

In a iso-hexagon cartogram we need to redefine this measure. Using a similar definition
of dividing the surrounding area of a hexagon by drawing lines through the edges of said
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3. Problem Description and Complexity

(a)
(b)

Figure 3.9: Adaption of the stability score for a iso-hexagon cartogram. (a) Defining
the sectors with lines through the edges of a hexagon leads to unintuitive sectors of
unfavorable size and shape. (b) Sectors are defined by lines through opposing corners.

hexagon result in overlapping sectors of unfavorable size and shape (see Figure 3.9a).
Instead we use lines through opposing corners of a hexagon to define the sectors, as in
Figure 3.9b. This leads to only 6 sectors instead of 8, which results in a 6-dimensional
vector βhex. With this vector we calculate the stability score as above.

Note that this first measure is the only one, that captures relative placement of regions
between cartograms, while all following measures only track the movement of a single
region between cartograms.

The second criteria measures the distance between the center of a square of a region
r in two different cartograms P, P ′. This measure δct will be called center movement
distance. Let c, c′ be the centers of the polygons in cartograms P, P ′ respectively. Then
δct is defined as:

δct =
|c − c′|
C ′

BB

This measure can clearly be used for both Demers cartograms and iso-hexagon cartograms.
Similar to δo we use C ′

BB to scale this measure to a range of [0, 1]. However we now take
the maximal length of a bounding box diagonal over the two layouts P, P ′.

The third measure keeps track of the corner movement of a region between cartograms.
The corner travel distance δco is defined as the sum of all distances between corners.
Let the squares of region ra in the Demers cartograms P, P ′ be given by their corners
(c1, c2, c3, c4) and (c′

1, c′
2, c′

3, c′
4) respectively. Then δco is defined as:

δco =
|c1 − c′

1| + |c2 − c′
2| + |c3 − c′

3| + |c4 − c′
4|

4 · CBB

We use the same large constant to scale this measure as for δct, simply multiplied by four.
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3.5. Quality Measurements

For usage in a iso-hexagon cartogram we need to adapt this measure to a new one called
δhex

co . Let the hexagons of region ra in P, P ′ be given by their corners (c1, c2, c3, c4, c5, c6)
and (c′

1, c′
2, c′

3, c′
4, c′

5, c′
6) respectively. Then δhex

co is defined as:

δhex
co =

|c1 − c′
1| + |c2 − c′

2| + |c3 − c′
3| + |c4 − c′

4| + |c5 − c′
5| + |c6 − c′

6|
6 · CBB

Sondag et al. [SSV18] mention that this measure is related to the measure of Schneider-
mann and Wattenberg [SW01], however since that measure factors in the size change of
a rectangle and the size changes between different cartograms are fixed in our scenario
we discarded the Schneidermann and Wattenberg metric.
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CHAPTER 4
Linear Program

A linear program is an approach to model a problem mathematically by introducing
variables, placing constraints on those variables and then defining an objective function
which is minimized. A problem is modeled such that, the constraints to enforce the
desired properties of a good solution and a minimal value of the objective function
corresponds to an optimal solution of the problem. When we find a variable assignment
that minimizes the objective function, we can then extract the information about this
optimal solution from the values of the variables. Linear programs or LP’s are formally
defined in 2.2.

In the following, we will present the formalization of the Demers cartogram minimization
problem (problem 2), which is based on the sketch of Chimani et al. [CKM+18], that
resulted from the Shonan Meeting No.127 in 2018.

After that, we will present how this formalization is adapted to the hexagonal case using
ideas, similar to Nickel and Nöllenburg [NN19].

4.1 LP-Model for Demers cartograms

Let R be the set of all regions, r ∈ R a single region and let w be a function which
associates a real number with every region, s.t. r is displayed in Cartogram C by a
square of area w(r). The position of a region r in the input is given by its center
c(r) = (x(r), y(r)). Adjacencies are given in input graph G = (R, T ). The x- and
y-coordinates of the regions in R define a planar embedding of G.

We will first explain how to formalize an LP, that creates a single Cartogram and we
will extend this idea to the simultaneous or iterative creation of multiple cartograms
afterwards.
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4. Linear Program

ε

ε

(a)

ε

ε

(b) (c)

Figure 4.1: In the possible configurations either the adjacency {r0, r2} or {r2, r1} is lost.
However a configuration (c) exists in which all adjacencies are realized and all separation
constraints are fulfilled.

4.1.1 Position of Regions

For every region r ∈ R, we create a variable xr, yr that encodes the x- and y-coordinate
of r. We will use the final values of these variables to extract the positioning of r in the
resulting Demers cartogram.

4.1.2 Disjointedness and Separation Constraints

We now want to enforce non overlapping hexagons in the LP. For this constraint we
differentiate between regions r0, r1 which were originally adjacent, i.e. r0, r1 ∈ T and
ones which were not. For the former we define the variable gapr0,r1

= 0. For the latter we
define gapr0,r1

= ε, where ε is a predefined value for a minimal distance of two adjacent
regions. This value must be chosen with some care, since the existence of a region r
with an associated value

√

wi(r) < ε can lead to an adjacency which can not be realized,
solely on the account of the minimal distance of its neighbors, see fig 4.1. In the figure,
we have {r0, r1} /∈ T =⇒ gapr0,r1

= ε. Since {r2, r0} ∈ T and {r2, r1} ∈ T we have
gapr2,r0

= gapr2,r1
= 0. Because

√

wi(r) < ǫ, r2 can only be placed adjacent to one of
the two other regions, not both.

The minimal distance required between the centers of two regions r0, r1 for them to be
non overlapping is

Dmin
01 =

(wi(r0) + wi(r1))
2

To enforce this distance on the regions we add the following constraints into the LP.

xr1
− xr0

≥ Dmin
01 + gapr0,r1

∀(r0, r1) ∈ Sx (4.1)

yr1
− yr0

≥ Dmin
01 + gapr0,r1

∀(r0, r1) ∈ Sy (4.2)
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4.1. LP-Model for Demers cartograms

In order to keep adjacent regions adjacent in the output, we want to add the following
constraints. The variables sr0,r1

x , sr0,r1

y measure the distance between r0 and r1.

sr0,r1

x ≥ max((xr0
− xr1

) − Dmin
01 , (xr1

− xr0
) − Dmin

01 ) ∀{r0, r1} ∈ T (4.3)

sr0,r1

y ≥ max((yr0
− yr1

) − Dmin
01 , (yr1

− yr0
) − Dmin

01 ) ∀{r0, r1} ∈ T (4.4)

sr0,r1

x , sr0,r1

y ≥ 0 ∀{r0, r1} ∈ T (4.5)

Now we can minimize these distances.

min
∑

{r0,r1}∈T
sr0,r1

x + sr0,r1

y (4.6)

Since we can weigh this constraint to such an extend, that all other constraints are
dominated by this one, we know that our linear program model finds a cartogram in
which we do not lose any adjacencies, if that is possible with the given weights. Note
however, that, if this is not possible, there are situations in which the LP does not find
the minimal number of lost adjacencies. As the LP only minimizes the sum over all
distances d, it can not differentiate between a situation where sr,r′

x = 0 and sr,r′′

x = 6 and
another situation in which sr,r′

x = sr,r′,
x = 3 even though it is obvious that the number of

lost adjacencies in the first case is one, while it is two in the second.

Strong Setting

For the strong setting we need to instantiate another separation constraint if we have an
additional separation in the input. Let r0, r1 be two regions, s.t., (r0, r1) ∈ Sx and r0, r1

have a horizontal separating line in the input with r0 being placed completely below the
line and r1 completely above. Then we add the constraints 4.2 additionally to ensure the
separation in the second dimension. All other cases can be handled similarly.

4.1.3 Slope

A result from the formulation of these constraints is that the two variables sr0,r1

x , sr0,r1

y

both have value zero if and only if the squares of r0 and r1 are touching. However
this leads to multiple optimal solution. As long as separation constraints are kept, the
representational squares for two regions can slide along their touching sides, without
changing the optimal value and therefore without multiple placements are considered
optimal by the LP.

In order to determine a single optimal relative placement for two regions in an output
drawing, we add a secondary constraint, which tries to keep the slope between the two
regions from the input intact. This secondary constraint has the singular goal of defining
an optimal solution within the set of previously indistinguishable optimal solutions. It
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4. Linear Program

Figure 4.2: Case distinction on the separational constraints and m for the Demers
cartogram

will therefore be multiplied with a suitably small constant before being added to the
objective value of the linear program, which ensures that no new optimal solutions arise.

We want to measure the discrepancy in slope of the line through the two centers of two
regions r0, r1 in the input and in the output. For this we introduce a new variable dr0,r1

,
which measures the distance in the orthogonal direction of the separation constraint, as
an approximate measure of the slope difference. The constraint uses the slope in the
input which is precomputed as:

m =
y(r1) − y(r0)
x(r1) − x(r0)

Depending on the separation of r0 and r1, different versions of the constraint are
instantiated. These cases are also illustrated in Figure 4.2. Note that we always
instantiate either the two constraints for horizontal separation or the two for vertical
separation.

[horizontal separation]

y(r1) − y(r0) < x(r1) − x(r0) :

dr0,r1
≥ y(r1) − y(r0) + m(x(r1) − x(r0)) for y(r1) ≥ y(r0)

dr0,r1
≥ y(r0) − y(r1) + m(x(r0) − x(r1)) for y(r1) < y(r0)

[vertical separation]

y(r1) − y(r0) ≥ x(r1) − x(r0) :

dr0,r1
≥ x(r1) − x(r0) + m(y(r1) − y(r0)) for x(r1) ≥ x(r0)

dr0,r1
≥ x(r0) − x(r1) + m(y(r0) − y(r1)) for x(r1) < x(r0)
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4.1. LP-Model for Demers cartograms

We then minimize the sum over all of these variables, multiplied by a suitable small
constant cnua as previously mentioned. We additionally weigh this more for regions which
are supposed to be adjacent. The idea is to lessen the importance of exact placement for
regions which do not actually have a border in common.

min
∑

{r0,r1}∈R
dr0,r1

· cnua (4.7)

Note that this constraint penalizes the same difference in slope for regions which are
placed farther apart more harshly than it does for regions which are closer together
without being adjacent.

4.1.4 Displacement from Origin

If we want to keep a region r0 at the position p = (x(r0), y(r0)) where they were placed
in the input, we can add the following constraint.

or0
≥ |xr0

− x(r0)| ∀r0 ∈ R (4.8)

or0
≥ |yr0

− y(r0)| ∀r0 ∈ R (4.9)

Then minimize the variable or over all regions r ∈ R. This variable is again multiplied
by a suitably small constant corg.

min
∑

r∈R
or · corg (4.10)

4.1.5 Extension to Multiple Cartograms and Stability Constraints

If we deal with time-series data we want to create multiple cartograms from the same input.
For each of those cartograms we will create an LP. So far these LP’s all have separate
variables and constraints and can be solved independently. If we want to introduce the
concept of stability, we want to create a connection through these constraints.

We try to achieve stability between two cartograms C1, C2 by minimizing the distance
between the position of a polygon, in case of the Demers cartogram a square, of a region
r0 in C1 and in C2. This is done by instantiating the following constraint. The variable
xi

r0
represent here the placement variable of r0 in cartogram i.

tr0
≥ |x1

r0
− x2

r0
| ∀r0 ∈ R

tr0
≥ |y1

r0
− y2

r0
| ∀r0 ∈ R
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4. Linear Program

This is as before summed up, multiplied by a weight cstab and then minimized.

min
∑

r0∈R
tr0

· cstab (4.11)

The cartograms are intended to be viewed as either a progression of cartograms, e.g.,
through time, or as a set of cartograms in which the user can switch from one cartogram
to any other. These two views lead to two different approaches in trying to achieve
stability. Let [C1, . . . , Ck] be the list of cartograms we want to create. If we approach
this as a series/progression of cartograms, we want to focus on stability from one point
i in the progression to the next i + 1. We call this the successive stability model. This
means we actually instantiate the following constraint.

ti
r0

≥ |xi
r0

− xi+1
r0

| ∀r0 ∈ R, ∀i ∈ [1, k − 1] (4.12)

ti
r0

≥ |yi
r0

− yi+1
r0

| ∀r0 ∈ R, ∀i ∈ [1, k − 1] (4.13)

If, however, we view the cartograms as an unordered set where switching can occur
between all pairs of cartograms, we need to generalize this to the following constraint.

ti,j
r0

≥ |xi
r0

− xj
r0

| ∀r0 ∈ R, ∀i, j ∈ [1, k − 1], i 6= j (4.14)

ti,j
r0

≥ |yi
r0

− yj
r0

| ∀r0 ∈ R, ∀i, j ∈ [1, k − 1], i 6= j (4.15)

The second approach, which we call the complete stability model, might be viewed as a
more holistic approach that can account for stability across the whole set. The obvious
downside to this is that, the number of created constraints in the second case is in
O(n · k2), while the first is in O(n · k).

Another downside to both of these approaches, in contrast to just creating a single
cartogram is that the total size of the LP increases with a factor of k. To counteract this
we can employ an iterative approach to creating stable cartograms.

Iterative Approach

In this approach we do not want to connect the LP’s into one big LP, but rather keep
them separate and use the result of one LP as a basis to guarantee stability to the next.
For this we create the LP for cartogram C1 as described in sections 4.1.1 to 4.1.4 and
solve it. We then fix the positions of all regions in C1. Then we employ the minimization
of the distance to the origin, not by using the position in the input but the already fixed
position in the last solved LP for the next. In general we create the following constraint.
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4.2. LP-Model for iso-hexagon cartograms

ti
r0

≥ |Xi
r0

− xi+1
r0

| ∀r0 ∈ R, ∀i ∈ [1, k − 1] (4.16)

ti
r0

≥ |Y i
r0

− yi+1
r0

| ∀r0 ∈ R, ∀i ∈ [1, k − 1] (4.17)

Note that Xi
r0

, Y i
r0

are constant in contrast to the variables xi+1, yi+1. This means that
the placement in cartogram i + 1 cannot influence the placement in cartogram i. This
approach will be called the iterative stability model.

4.2 LP-Model for iso-hexagon cartograms

In this section we describe the changes we need to make to the formalization in order
to create iso-hexagon cartograms instead of Demers cartograms. In particular we will
introduce new variables which account for the additional drawing directions and adapt
constraints to use these new variables.

4.2.1 Position of Regions

Additionally to the already defined variable xr0
, yr0

we define three variables z0(r), z1(r), z2(r)
which redundantly identify the placement of a region r in the plane. The corresponding
directions are depicted in Figure 4.3a.

z0(r) = xr (4.18)

z1(r) = cos
(

π

3

)

· xr + sin
(

π

3

)

· yr (4.19)

z2(r) = cos
(

2 · π

3

)

· xr + sin
(

2 · π

3

)

· yr (4.20)

4.2.2 Disjointedness and Separation Constraints

To enforce this distance on the regions we add the following constraints into the LP.
Note that the structure of these constraints is similar to the ones used in the Demers
cartogram LP, just adapted to the new positional variables z0, z1, z2.

z0(r1) − z0(r0) ≥ Dmin
01 + gapr0,r1

∀(r0, r1) ∈ S0 (4.21)

z1(r1) − z1(r0) ≥ Dmin
01 + gapr0,r1

∀(r0, r1) ∈ S1 (4.22)

z2(r1) − z2(r0) ≥ Dmin
01 + gapr0,r1

∀(r0, r1) ∈ S2 (4.23)

In order to keep adjacent regions adjacent in the output, we want to add the following
constraints. The variable sr0,r1

0 , sr0,r1

1 , sr0,r1

2 measure the distance between r0 and r1. For
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4. Linear Program

z0

z1
z2

z
o

0

z
o

1

z
o

2

(a) (b)

Figure 4.3: (a) Orthogonal directions of the hexagonal case are not yet encoded in the
system. (b) Case distinction on the separational constraints and m for the hexagonal
case.

ease of notation we will write δi(r0, r1) for zi(r0) − zi(r1).

sr0,r1

0 ≥ max(δ0(r0, r1) − Dmin
01 , δ0(r0, r1) − Dmin

01 ) ∀{r0, r1} ∈ T (4.24)

sr0,r1

1 ≥ max(δ1(r0, r1) − Dmin
01 , δ1(r0, r1) − Dmin

01 ) ∀{r0, r1} ∈ T (4.25)

sr0,r1

2 ≥ max(δ2(r0, r1) − Dmin
01 , δ2(r0, r1) − Dmin

01 ) ∀{r0, r1} ∈ T (4.26)

sr0,r1

0 , sr0,r1

1 , sr0,r1

2 ≥ 0 ∀{r0, r1} ∈ T (4.27)

Now we can minimize these distances.

min
∑

{r0,r1}∈T
sr0,r1

0 + sr0,r1

1 + sr0,r1

2 (4.28)

4.2.3 Slope

To generalize this idea to the hexagonal case, we need some further information about
the placement of the regions, namely the coordinates in the orthogonal directions to the
three defined coordinates z0, z1, z2. Observe in Figure 4.3a that these are not yet encoded
in our system. We define the orthogonal directions zo

0, zo
1, zo

2 as follows.

zo
0(r) = y(r) (4.29)

zo
1(r) = − sin

(

π

3

)

· x(r) + cos
(

π

3

)

· y(r) (4.30)

zo
2(r) = − sin

(

2 · π

3

)

· x(r) + cos
(

2 · π

3

)

· y(r) (4.31)

Next we want to formulate the case distinction for the hexagonal case. We will differentiate
not just m ≥ 0 vs. m < 0 but instead will define 6 equally sized ranges in which the
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4.2. LP-Model for iso-hexagon cartograms

slope can fall, each spanning [α, α + π
3 [, where α ∈

{

0, π
3 , 2π

3 , π, 4π
3 , 5π

3

}

. This defines 6
different cases which we will call Ai, Bi, Ci for i ∈ {1, 2}, illustrated in Figure 4.3b.

The slope variable m is going to be adjusted into the following three variables.

m0 = m

m1 = tan(θ − π

3
)

m2 = tan(θ − 2π

3
)

These definitions make use of the angle θ = atan2(1/m, m). The atan2(x, y) function,
which calculates the angle between the x-axis and a line through (0, 0) and (x, y), is
defined as:

atan2(x, y) =



















































arctan
(

x
y

)

if x > 0

arctan
(

x
y

)

+ π if x < 0 ∧ y ≥ 0

arctan
(

x
y

)

− π if x < 0 ∧ y < 0
π
2 if x = 0 ∧ y > 0

−π
2 if x = 0 ∧ y < 0

undefined if x = 0 ∧ y = 0

The two variables z0(r) and zo
0(r) encode exactly the x and y coordinates of the center

point pr of the region r. With z1(r), zo
1(r) and z2(r), zo

2(r) we encode these coordinates
in relation to a coordinate system which is rotated by 60◦ and 120◦ respectively.

∀i ∈ {0, 1, 2} :

{

zi(pr) = x(pr
i )

zo
i (pr) = y(pr

i )

The newly defined variables m0, m1 and m2 encode the slopes of the lines through the
origin and pr

0 = pr, pr
1 and pr

2 respectively, which are just rotations around the origin by
0◦, 60◦ and 120◦ of the line through the origin and pr.

With these newly defined variables, we can formulate the generalized constraint for the
hexagonal case, which is again differentiated in relation to the membership of r0 and r1

in S0, S1 and S2. If (r0, r1) is contained in multiple separation constraints, we instantiate
the constraint for Sk s.t. ∀i ∈ {0, 1, 2} : |zk(r0)−zk(r1)| ≥ |zi(r0)−zi(r1)|, i.e., we choose
the dimension in which r0 and r1 have the greatest separation.

(r0, r1) ∈ S0 ∨ (r1, r0) ∈ S0 :

dr0,r1
≥ zo

0(r1) − zo
0(r0) + m0(z0(r1) − z0(r0)) for zo

0(r1) ≥ zo
0(r0) (4.32)

dr0,r1
≥ zo

0(r0) − zo
0(r1) + m0(z0(r0) − z0(r1)) for zo

0(r1) < zo
0(r0) (4.33)
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4. Linear Program

(r0, r1) ∈ S1 ∨ (r1, r0) ∈ S1 :

dr0,r1
≥ zo

1(r1) − zo
1(r0) + m1(z1(r1) − z1(r0)) for zo

1(r1) ≥ zo
1(r0) (4.34)

dr0,r1
≥ zo

1(r0) − zo
1(r1) + m1(z1(r0) − z1(r1)) for zo

1(r1) < zo
1(r0) (4.35)

(r0, r1) ∈ S2 ∨ (r1, r0) ∈ S2 :

dr0,r1
≥ zo

2(r1) − zo
2(r0) + m2(z2(r1) − z2(r0)) for zo

2(r1) ≥ zo
2(r0) (4.36)

dr0,r1
≥ zo

2(r0) − zo
2(r1) + m2(z2(r0) − z2(r1)) for zo

2(r1) < zo
2(r0) (4.37)

Constraints (4.32)-(4.37) can be formulated as one generalized constraint:

(r0, r1) ∈ Si ∨ (r1, r0) ∈ Si :

dr0,r1
≥ zo

i (r1) − zo
i (r0) + mi(zi(r1) − zi(r0)) for zo

i (r1) ≥ zo
i (r0) (4.38)

dr0,r1
≥ zo

i (r0) − zo
i (r1) + mi(zi(r0) − zi(r1)) for zo

i (r1) < zo
i (r0) (4.39)

4.2.4 Other Differences

We further stress that we do not define an equivalent to the strong case for the iso-hexagon
cartograms. All other constraints we have described in Section 4.1 can be instantiated as
before.
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CHAPTER 5
Leader Lines

The necessity of separation constraints and the limitations of contact representations can
lead to situations in which adjacencies between regions are lost. As a cartogram tries
to resemble the topology of the input, lost adjacencies are undesirable. The LP model
presented in Chapter 4 tries to minimize the distance between regions, which should be
adjacent, in an attempt to minimize the number of lost adjacencies.

However it is possible to define the adjacency graph G = (V, E) and assign weights
to regions, such that not all adjacencies can be realized in a Demers cartogram or a
iso-hexagon cartogram. These cases are depicted in Figures 3.3, 3.4 and 5.1. A way to
cope with this is to visualize lost adjacencies through connecting curves between the
polygons of regions, which are supposed to be adjacent.

(a) (b) (c)

Figure 5.1: Adjacent regions in Cartogram (a) lose at least one adjacency in a new
Cartogram, where their weights have changed (b-c).
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5. Leader Lines

(a) (b) (c)

Figure 5.2: Leader lines in a Demers cartogram (a), and leader lines which run orthogonal
(b) and parallel (c) to the directions z0, z1, z2 in a iso-hexagon cartogram.

5.1 Definition

We will call these curves leader lines. In order to keep the visual style of the cartogram,
we require every section of a leader line to be orthogonal to one of the available drawing
dimensions. Examples are presented in Figures 5.2a and 5.2b. Note that in a Demers
cartogram, lines running parallel to the drawing directions are equivalent to lines running
orthogonal to the drawing directions. However since no drawing direction in a iso-hexagon
cartogram is orthogonal to another, we want to keep the leader lines orthogonal to the
drawing directions, which keeps them parallel to the edges of the hexagons and lowers
visual disturbance. Figure 5.2c is an example in which the leader lines are kept parallel
to the drawing directions.

5.2 Leader Lines in a Demers cartogram

Nickel et al. [NSM+19] showed that lost adjacencies between regions r1 and r2 in a Demers
cartogram, created by the linear program discussed in Section 4.1, can be visualized with
an orthogonal line l of bounded length. They prove an upper bound of the length of this
leader line, which is equal to the distance between the closest points of r1 and r2 we want
to connect, measured in L1-metric. In the next section we want to go into the details of
the proof, since we will extend some of the concepts to the iso-hexagon cartograms.

5.2.1 Existence of a Minimal Length Leader Line

First they assume that (r1, r2) ∈ Sx, i.e., r2 ought to be placed right of r1. They also
assume the existence of a hypothetical cartogram A, in which the adjacency between
r1 and r2 can be realized, and they assume r1 and r2 to be minimal, in the sense that
there can not be a third region r3, s.t., (r1, r3), (r3, r2) ∈ Sx. Next they differentiate
the relative placement of r1 and r2. If there exists a horizontal line that intersects both
regions, this line cannot be interrupted by another square due to the minimality of r1

and r2 and the line has the required minimal length. If r2 is placed completely above r1,
they define an area S = [x1, x2] × [y1, y2] which spans between the upper right corner of
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5.2. Leader Lines in a Demers cartogram

r1 and the lower left corner of r2. The leader l must be completely contained in S. Note
that the lower right corner of S is the extreme point at which a square, that was above
r1 and left of r2, can be drawn. Conversely the upper left corner is the extreme point for
square below r2 and right of r1.

Then they identify the set of all regions L, s.t., rl ∈ L =⇒ (r1, rl) ∈ Sy ∧ (rl, r2) ∈ Sx,
i.e., all regions which were placed above r1 and left of r2. Note two things. First, this
set is a subset of the set Lmax of all regions, which have their center left of the line
connecting the centers of r1 and r2 in A and second, no square in Lmax\L can interfere
with the leader line. The area L is subtracted from S resulting in a (non-empty) region
S′ = S\L. Finally the leader is obtained by tracing the upper boundary of S′. This
results in a line that starts out vertically and turns right into a horizontal segment, if a
region r ∈ L restricts the area at this height, until it reaches the corner of r then turning
left again into a vertical segment, forming a concave bend in the line. The region r is
called responsible for the bend.

The existence of l is argued by assuming that there exists a region obstructing this line
and deriving a contradiction. They assume r is an obstacle of this line. Note that r can
not be in L, since it would have otherwise simply been responsible for a concave bend in
l and the l would avoid the obstacle by definition of S′. The square r must intersect l
at some segment. Since l is orthogonal, this is either a vertical or a horizontal segment.
Assume it intersects l at a horizontal segment and let r′ be the square responsible for the
concave bend in l. If no such bend exists then r′ = r2. The intersection of r and l at a
horizontal segment directly implies that r and r′ can not be separated by a horizontal
line and (r′, r) ∈ Sx would make this intersection impossible. Therefore we know that
(r, r′) ∈ Sx. Since r′ ∈ L we know that (r′, r2) ∈ Sx and since separation constraints are
transitive, we know that (r, r2) ∈ Sx. In order to be able to interfere with the line, r can
not be placed below or to the left of r1. If (r1, r) ∈ Sy, then r would be in L, which, as
already argued, is impossible. If (r1, r) ∈ Sx, then r1 and r2 are not minimal. Therefore
r can not exist.

5.2.2 Differences in the Iso-Hexagon Case

Even though we will use some of the ideas presented by Nickel et al. [NSM+19], it is
important to understand that this proof does not simply translate to the iso-hexagon
cartograms. In this section we want to point to the differences, which require attention.
First, if in a Demers cartogram two adjacent regions r1, r2 are placed next to each
other, e.g., (r1, r2) ∈ Sx, r1, r2 are minimal and they have a horizontal line stabbing
through both regions, then, as argued above, this line cannot be possibly intersected
by third region, regardless of the horizontal distance between r1 and r2. However, in
a iso-hexagon cartogram, this is not guaranteed. If (r1, r2) ∈ S0 and a third region r3

exists such that (r1, r3) ∈ S1 ∧ (r2, r3) ∈ S2, then increasing the distance between r1 and
r2 can lead to a placement of r3, which is consistent with the separation constraints, but
nevertheless completely blocks any horizontal line between r1 and r2. This is illustrated
in Figure 5.3a. Even an adjustment to this region as shown in Figure 5.3b does not
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5. Leader Lines

(a) (b)

(c)

Figure 5.3: (a) No horizontal line exists between the two regions. Even adjusting the
area, s.t., it has edge-parallel boundaries (b) does not guarantee that the area contains a
valid leader line, since the area does not actually model the extreme points of placement
for obstacles, which is shown in (c).

trivially solve this problem, since in contrast to the Demers cartogram, an obstacle in a
iso-hexagon cartogram can completely block the edge of r0 which had contact with r1, as
displayed in Figure 5.3c.

In the next section we proof an upper bound of a leader line in a iso-hexagon cartogram,
by following similar steps as presented above and amending the argument where necessary.

5.3 Leader Lines in a iso-hexagon cartogram

e5e4

e3

e2 e1

e0

z2
z1

z0

Figure 5.4

Before we start analyzing the leader lines in a iso-hexagon car-
togram, we want to define some additional notation, which en-
ables us to talk about the hexagons, representing the regions.

Since all hexagons representing regions are rotated the same
way, we can define a lexicographical order on the edges. The
rightmost edge of a region r0 will be called e0(r0) and we number
the edges in counter-clockwise order, as depicted in Figure 5.4.
We will always consider the index of the edge to be interpreted
as being modulo 6. An edge ei is always perpendicular to the
direction zj , with j = i mod 3. We will further use in- and
decrementation on the separation constraints in this chapter.
For this we define (r1, r2) ∈ S2+1 =⇒ (r2, r1) ∈ S0 and also
(r1, r2) ∈ S0−1 =⇒ (r2, r1) ∈ S2, i.e., we consider the separation constraints to be
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5.3. Leader Lines in a iso-hexagon cartogram

interpreted as being modulo 3.

We assume, that there exists a hypothetical Cartogram A without size constraints in
which all adjacencies and all separation constraints are kept. The assumption of existence
of such a cartogram is sufficient and we do not need to know the specific placement of
the regions in A.

In order to talk about the distances of two regions we define the following values.

δi(r0, r1) = zi(r0) − zi(r1)

δo
i (r0, r1) = zo

i (r0) − zo
i (r1)

ki(r0, r1) = δi(r0, r1) − (si(r0) + si(r1))
2

The value k(r0, r1) is the distance of r0 and r1 in the dimension of biggest separation,
measured from the border of the polygons.

Let c(r) be the center of region r. Let si(r) be the line through c(r), parallel to zo
i . Note

that si(r) crosses through two opposing corners and splits r in half. Let li(r) be the line
through both endpoints of ei(r). Let l, l′ be two lines. Then we define the relations >i

and ≥i as follows:
l ≥i l′ ⇐⇒ ∀p ∈ l, p′ ∈ l′ : zi(p) ≥ zi(p′)

l >i l′ ⇐⇒ ∀p ∈ l, p′ ∈ l′ : zi(p) > zi(p′)

Intuitively we want to be able to define an ordering on parallel lines in a given dimension.

And lastly we want to proof a property of adjacent regions in the hypothetical cartogram
A. Assume that (r0, r1) ∈ S1 and that {r0, r1} ∈ T , i.e., they are adjacent in A. From
this we can follow this lemma.

Lemma 5.3.1. If two regions r0 and r1 are adjacent and (r0, r1) ∈ Si, then ei−1(r0) ≥i−1

ei+2(r1) and ei+1(r0) ≥i+1 ei−2(r1) in A.

Proof. Assume, w.l.o.g., that (r0, r1) ∈ S1. Assume further e0(r0) <0 e3(r1). Then
∀p ∈ e0(r0), q ∈ e3(r1) : z0(p) < z0(q). Note that all points on e0(r0) have a maximal
z0-coordinate in the set of all points in r0 and all points on e3(r1) have a minimal
z0-coordinate in the set of all points in r1. We now draw a line l orthogonal to z0 with the
z0-coordinate q+p

2 . Note that l is parallel to e0(r0) and e3(r1) and that ∀t ∈ l : z0(p) <
z0(t) < z0(q). The line l is therefore a separating line between r0 and r1, which makes
them not adjacent. This is a contradiction to the assumption that A keeps all adjacencies.
The same argument holds for e2(r0) ≥2 e5(r1) and all other directions are equal up to
rotation and symmetry.

And finally we ask the reader to note that separation constraint membership can be
determined by the relative center placement of two hexagons. Dependent on the placement
of the center of one hexagon r′ relative to another r, we can determine their separation
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5. Leader Lines

Sa
0

Sb
0

Sa
1

Sb
1

Sa
2

Sb
2

Figure 5.5: Sectors of a hexagon of region r defined by lines through opposing corners. If
the center of another hexagon of region r′ lies in Sector Sa

i we have (r, r′) ∈ Si, if it lies
in a Sector Sb

i we have (r′, r) ∈ Si.

constraint. The sectors, as shown in Figure 5.5, of a hexagon of region r are defined by
lines through opposing corners. If the center of another hexagon of region r′ lies in sector
Sa

i we have (r, r′) ∈ Si, if it lies in sector Sb
i we have (r′, r) ∈ Si.

5.3.1 Proof of a Leader Line

We want to define an area S between the two regions r0, r1 which are supposed to be
connected by a leader line l, s.t., l is contained in S. In a Demers cartogram this was
done by defining an area that captures the extreme placement options of obstacles on
either side of this line. Before we can define this area, we want to look at what regions
can actually pose an obstacle to a leader line between r0 and r1. We group these obstacle
in two groups L and R. L contains all regions with their centers placed on one side (left)
of lcent = c(r0)c(r1) and R contains all regions on the other side (right) of lcent. Note
that all regions rl ∈ L must have one of four separation constraints with r0 (and r1),
namely

(r0, rl) ∈ S0 ∨ (r0, rl) ∈ S1 ∨ (r0, rl) ∈ S2 ∨ (rl, r0) ∈ S0

Assume (r0, r1) ∈ S0. Then we want a leader line to be contained in the area between
the two regions, i.e., two one side of l0(r0) and to the other side of l3(r1). We call this
area A. Because of this we can exclude all regions rl with (rl, r0) ∈ S0 from L since they
can not possibly intersect A.

L′ = L\{rl|(rl, r0) ∈ S0}

R′ is defined accordingly. Next we state the following lemma. Less technically, this
lemma states that two regions from L′ and R′ respectively, can not cross inside A.

Lemma 5.3.2. Let rl ∈ L′ and rr ∈ R′. If {rl, rr} ∈ T , then either (r0, rl) ∈ S2 ∧
(rr, r0) ∈ S1 or (r1, rl) ∈ S1 ∧ (rr, r1) ∈ S2.
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5.3. Leader Lines in a iso-hexagon cartogram

5.
(r

0
,r

′
′
)
∈
S
1

(r0, r
′) ∈ S1

(r1, r
′) ∈ S2(r′, r1) ∈ S0

(r
′
′
,r

1
)
∈
S
0

(r0, r
′) ∈ S0

(r
0
,r

′
′
)
∈
S
1

(r
1
,r

′
′
)
∈
S
2

(r
0
,r

′
′
)
∈
S
0

(r
1
,r

′
′
)
∈
S
2

1. 2. 3.

4. 6.

9.8.7.

(r0, r
′) ∈ S1

(r1, r
′) ∈ S2

Figure 5.6: All nine different combinations of memberships of two regions r′, r′′ ∈ Lmin.

Proof. Obvious because of the planar embedding of the adjacency graph where every
vertex representing a region is placed exactly where the region is placed in A.

We define the two sets Lmin = L′\{rl|(r0, rl) ∈ S2 ∨ (r1, rl) ∈ S1} and Rmin =
R′\{rr|(rr, r0) ∈ S1 ∨ (rr, r1) ∈ S2}. From the previous lemma we know that the
regions in Lmin and Rmin are pairwise not adjacent.

Placement of Obstacles on the Same Side

We will now look at the possible extreme placements of regions both Lmin and Rmin. We
will first analyze how the placement of an obstacle affects the possible placement of other
obstacles in the same set. For this we present Figure 5.6. There we can clearly see that a
configuration in which the first region r′ is to the left of r0 and the second r′′ is to the
right of r1, i.e., (r0, r′), (r′′, r1) ∈ S0, is impossible. This can be proven by using the fact
that for this to happen, we need both r0 and r1 to extend above the other one, which is
a contradiction. That means that, if we draw the possible positions of obstacle regions in
Lmax, we can encounter either the possible placement in Figure 5.7a or 5.7b but never
both at the same time, since the vertical line on the left of the placement area is enforced
by (r0, r′) ∈ S0 and the right one by (r′′, r1). Note that the placement area in Figure 5.7c
is strictly contained in the other two. The same area can be defined for the mirrored
version of Rmax. We will treat this areas as being completely filled in an extreme case.
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5. Leader Lines

Placement of Obstacles on Different Sides

If we consider all possible combinations of placement areas for Lmin and Rmin, we arrive
at the four possibilities displayed in figure 5.8. Note that the union of both areas in
Figure 5.8a is completely contained in the union of both areas in Figure 5.8c. The same
holds for Figures 5.8b and 5.8d. Figures 5.8c and 5.8d give us a parallelogram in which
we want to draw the leader line l. Let A be that parallelogram.

In the first case (Figure 5.8c) we adapt this area by excluding all points p that lie, in
a sense, above the lowest corner of a region rl ∈ Lmin. Let q be the lowest corner of
rl, i.e., the crossing point of e4(rl) and e5(rl). Then excluding all points p above q, i.e.,
z1(p) > z1(q) ∧ z2(p) > z2(q), results in an area A′ ⊆ A. The leader line is obtained by
tracing the upper boundary of A′. In the second case (Figure 5.8d) we exclude the points
lying below the upper corners of hexagons rr ∈ R′ in a similar manner, we end up with
our final region A′′. The leader line is obtained by tracing the lower boundary of A′′.
Figure 5.9 is an example of a leader line construction for A′. If the leader would follow
the dashed line, it would have half the length of the boundary of A′, which is the upper
bound of a leader line constructed in this way. Since A′ can be filled with obstacles up to
arbitrarily small ε-sized gaps, this bound is tight, even though it will never be reached.

The existence of this leader line inside the area A follows directly from the fact that no
two regions rl ∈ Lmin, rr ∈ Rmin can be adjacent as stated before. The existence of a
leader line as constructed above, however is not as clear. In order to proof this we first
want to establish a lemma about the possible separation constraints between regions in
Lmin and Rmin. This is done in the next section.

(a) (b)
(c)

Figure 5.7: Placement areas for regions in Lmin. In an extreme case, the union of all
regions in Lmin could fill the complete placement area, up to ε-sized holes which can be
arbitrarily small. Note that the area of (c) is strictly included in (a) and (b).
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5.3. Leader Lines in a iso-hexagon cartogram

(a) (b) (c) (d)

Figure 5.8: All four possible combinations of placement areas for regions in Lmin and
Rmin. The overlap of the areas is marked with the shaded areas. The union of both
areas in (a) and (b) is included in (c) and (d) respectively.

Figure 5.9: Leader line example. The dashed lines indicate the upper bound.

Separation constraints of Obstacles on Different Sides

We want to answer the question if, for every pair of hexagons rl ∈ Lmin, rr ∈ Rmin, we
can always find a separating line between them that is either parallel to l1(r0) or l5(r0).
To show this it is, in turn, sufficient to show the following

∀rl ∈ Lmax, rr ∈ Rmax : (rr, rl) ∈ S1 ∪ S2

Here we ask the reader to note that separation constraints are equivalent to relative
center placement and that all hexagons which are placed in two lower sectors of a hexagon
(see Figure 5.5) have a separating line parallel to l1(r0) or l5(r0) with that hexagon.

r0

r1

r
′

s1(r
′)

s1(r0)

Figure 5.10

To simplify the argumentation below we want to
establish two lemmas, which capture the two core
concepts used in the proof below. Lemma 5.3.3
states that for two regions r, r′ with a separation
constraint (r, r′) ∈ Si, we can always find a sepa-
rating line between si(r′) and si(r). Lemma 5.3.4
states that in certain constellations of three re-
gions r0, r1, rl, e.g., the first and third column of
Figure 5.11, we can also find a separating line be-
tween a different set of lines through their centers.
Figure 5.10 is an example of such a constellation
and the two lines for which the lemma states, they
have a separating line, are highlighted.

Lemma 5.3.3. Let r and r′ be two regions, s.t., (r, r′) ∈ Si. Then si(r′) >i si(r).
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5. Leader Lines

Proof. This first lemma is straight forward. Since all regions have non-zero size we
know si(r′) >i ei+3 and ei(r) >i si(r). The separation constraint (r, r′) ∈ Si enforces
ei+3 >i ei(r). From this it clearly follows that si(r′) >i ei+3 >i ei(r) >i si(r).

Lemma 5.3.4. Let r0, r1 and r′ be regions, s.t., (r0, r1) ∈ S0 and {r0, r1} ∈ T .

1. If (r′, r1) ∈ S0

a) If (r′, r0) ∈ S2, then s1(r0) >1 s1(r′).

b) If (r0, r′) ∈ S1, then s2(r′) >2 s2(r0).

2. If (r0, r′) ∈ S0

a) If (r′, r1) ∈ S1, then s2(r0) >2 s2(r′).

b) If (r1, r′) ∈ S2, then s1(r′) >1 s1(r0).

Proof. We will give the proof for case 1.a). All other cases are equal up to symmetry.
We define the area Ap as all points left of e3(r1) and below e5(r0). This area is marked
in Figure 5.10.

(r′, r0) ∈ S2 =⇒ e5(r0) >2 s2(r′)
(r′, r1) ∈ S0 =⇒ e3(r0) >0 s0(r′)

}

=⇒ c(r′) ∈ Ap

By definition of Ap we know that every line lp parallel to zo
1, which runs through a point in

Ap lies below s1(r0). Since c(r′) ∈ Ap and c(r′) ∈ s1(r′) we know that s1(r0) >1 s1(r′).

We present Figure 5.11, in which all possible combinations of separation constraints
between rl—in green and at the top—and rr—in orange and at the bottom—are shown.

Recall the assumption of the existence of A. In this hypothetical cartogram, r0 and r1 are
placed adjacent to each other and all separation constraints,In particular the separation
constraint between rl and rr, are kept. We will show that in A (and therefore in every
other cartogram) this separation constraint can only ever be S1 or S2 and never S0.

Now we state the following Theorem, which restricts the separation constraints of obstacles
on different sides of lsep.

Theorem 5.3.5. Let r0, r1, rl, rr be four regions, s.t. {r0, r1} ∈ T , (r0, r1) ∈ Si and
rl ∈ Lmin, rr ∈ Rmin. Then (rl, rr), (rr, rl) 6∈ Si in A.

Proof. We will give the proof for (r0, r1) ∈ S0. All other cases are equal up to symmetry.
First note that from s1(rl) >1 s1(rr) it directly follows that (rl, rr) 6∈ Si and from
s2(rl) >2 s2(rr) it directly follows that (rr, rl) 6∈ Si. Next we know from Lemma 5.3.1
that e1(r0) >1 e4(r1) and e2(r1) >2 e5(r0).
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5.3. Leader Lines in a iso-hexagon cartogram

5.

(r0, rl) ∈ S1(r0, rl) ∈ S1

(rl, r1) ∈ S0

(r
r
,r

1
)
∈
S
0

(r0, rl) ∈ S0

(r
r
,r

0
)
∈
S
2

(r
0
,r

r
)
∈
S
0

(r
r
,r

1
)
∈
S
1

1. 2. 3.

4. 6.

9.8.7.

(r1, rl) ∈ S2 (r1, rl) ∈ S2

(r
r
,r

0
)
∈
S
2

(r
r
,r

1
)
∈
S
1

Figure 5.11: Nine different possible configurations of the two regions rl ∈ Lmin and
rr ∈ Rmin. The two regions are not necessarily adjacent to r0 or r1.

We will now show for every possible configuration in Figure 5.11 that the following holds:

(I) :s1(rl) >1 s1(rr)

(II) :s2(rl) >2 s2(rr)

Configuration 1 (and symmetrically configuration 9):

(I): By Lemma 5.3.3 we know that s1(rl) >1 s1(r0). By Lemma 5.3.4 we know that
s1(r0) >1 s1(rr).

(II): By Lemma 5.3.4 we know that s2(rl) >2 s2(r0). By Lemma 5.3.3 we know that
s2(r0) >2 s2(rr).

Configuration 2 (and symmetrically configurations 4, 6, 8):

(I): By Lemma 5.3.3 we know that s1(rl) >1 s1(r0). By Lemma 5.3.4 we know that
s1(r0) >1 s1(rr). This is the same as for 1.I.

(II): By separation constraint we know that s2(rl) >2 e2(r1) and e5(r0) >2 s2(rr). By
Lemma 5.3.1 we have e2(r1) >2 e5(r0).

Configuration 3 (and symmetrically configuration 7):

(I): By Lemma 5.3.4 we know s1(rl) >1 s1(r0) and s1(r1) >1 s1(rr). As a direct
consequence of Lemma 5.3.1 we know s1(r0) >1 s1(r1)

(II): By separation constraint we know that s2(rl) >2 e2(r1) and e5(r0) >2 s2(rr). By
Lemma 5.3.1 we have e2(r1) >2 e5(r0). This is the same as for 2.II.
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5. Leader Lines

Configuration 5:

(I): By separation constraint we know that s1(rl) >1 e1(r1) and e4(r0) >2 s1(rr). By
Lemma 5.3.1 we have e1(r1) >2 e4(r0).

(II): By separation constraint we know that s2(rl) >2 e2(r1) and e5(r0) >2 s2(rr). By
Lemma 5.3.1 we have e2(r1) >2 e5(r0). This is the same as for 2.II.

As a direct consequence of Theorem 5.3.5 we state the following corollary.

Corollary 5.3.5.1. Let r0, r1, rl, rr be four regions, s.t. {r0, r1} ∈ T , (r0, r1) ∈ Si and
rl ∈ Lmin, rr ∈ Rmin. Then we can always draw a line parallel to zo

j , s.t. j ∈ {0, 1, 2}\i
between rl and rr.

Existence of the Leader Line

We differentiate between two cases. In the first case, both of the intersections are empty.
Then we can simply trace one of the areas upper/lower boundary and we have a leader
line. Assume therefore that both S′ and S′′ are non-empty. Then in the other case,
we assume we trace the lower boundary of S′. Tracing the upper boundary of S′′ is
equivalent up to symmetry.

If there exists a region r that intersects l at the vertical segment at the start of l, then
r 6∈ Lmin since all regions in Lmin are completely to the right of this segment. The
vertical segment is only drawn if there exists a region rl ∈ Lmin, s.t., s1(r0) >1 l4(rl).
This means that the starting point of l was excluded from A′ and we need to move
downwards first. If (r, rl) ∈ S1 ∪ S2, then r can not intersect l and by Lemma 5.3.5
r 6∈ Rmin. This means the center of r must be placed either to the right of s0(r1) or
to the left of s0(r0). If (r1, r) ∈ S1, (r, r1) ∈ S2 or (r0, r) ∈ S2 then r is separated from
the segment by either r0 or r1. If (r, r0) ∈ S1, then r can actually intersect the vertical
segment. But since we know through Lemma 5.3.2 that no region in Lmin can be adjacent
to r, we can simply trace the outline of r. It is of note that since r can only interfere with
this vertical segment with the edge e1(r), the distance traveled is the same is if we would
have traced the outline of A′ or shorter. This special case is illustrated in Figure 5.12.
The intersection for the last vertical segment can be argued similarly.

Assume r intersects l at a segment parallel to zo
1. Then r can not be in Lmin since l

would have simply traced the outside of r. Some part of r would lie above the leader line,
which makes a separating line between r and the hexagon responsible for the current
bend parallel to zo

1 or zo
2 impossible and by Lemma 5.3.5.1 it can not be in Rmin. If

(r1, r) ∈ S1, (r, r1) ∈ S2 or (r0, r) ∈ S2 then r is separated from the segment by either r0

or r1. If (r, r0) ∈ S1, then l would have traced r as described above. The intersection
with a segment parallel to zo

2 can be argued similarly.

Therefore we conclude that a leader line as constructed above always exists.
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5.3. Leader Lines in a iso-hexagon cartogram

Figure 5.12: Illustration of a case, where the vertical segment is broken up. Since the
placement of the green hexagon indicated with a red star is impossible, we never need to
backtrack, and since the way, directly through the obstacle is as long as the way around,
we stay at the same length.

Length of a Leader Line

In the case where both intersections are empty, we can draw a simple line between the
two regions, which results in a lower bound of L.

L =
2 · k0(r0, r1)√

3

If one or both intersections are non-empty, we might be forced to draw a vertical segment
into the leader line, which increases the length.

The upper bound on the length of l is, as already argued above, the length of the boundary
of A′ or A′′. However since we do not know how the separation constraints between the
regions in Lmin/Rmin and r0/r1 are set up, we need to take the maximum of both values.

The distance k0(r0, r1) together with the two angles of 90◦ at r0 and 30◦ defines a triangle
that has a left edge of length k0(r0,r1)√

3
. When looking at the distance to the highest

point of A′′ a positive δo
0(r0, r1) adds to the total length of the distance, while a negative

δo
0(r0, r1) subtracts from this length. And since the distances are measured from the

center points, we need to subtract the weights of the hexagons. This leaves us with a
distance

dhigh = max
(

∣

∣

∣

∣

k0(r0, r1)√
3

+ δo
0(r0, r1)

∣

∣

∣

∣

− (w(r0) + w(r1))
2

, 0
)

When looking at the lowest point of A′ we get a similar result, however we need to start
out with the negative value of k0(r0, r1)/

√
3 since the distance is traveled in negative

zo
0-direction and the additive effect of δo

0(r0, r1) is reversed.

dlow = max
(

∣

∣

∣

∣

−k0(r0, r1)√
3

+ δo
0(r0, r1)

∣

∣

∣

∣

− (w(r0) + w(r1))
2

, 0
)
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5. Leader Lines

With this we can finally give an upper bound B for the length of a leader line l.

B = max
(

dhigh, dlow
)

+ L

With this bound established, we state the following theorem.

Theorem 5.3.6. Let r0, r1 be two regions, s.t. {r0, r1} ∈ T and let there be a hypothetical
cartogram A. The adjacency between two regions r0, r1 in a cartogram B can always be
visualized with a leader line l of length |l|, s.t., L ≤ |l| ≤ B.
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CHAPTER 6
Implementation

This thesis we implemented the linear programs described in Section 4, including a
graphical user interface which lets the user load an input map and associated values for
the countries in different layers, choose the method which is used to create (multiple)
stable cartograms, choose the settings of the chosen method, measure the generated maps
with a set of metrics, visualize qualities of the maps and export the generated maps to a
file.

6.1 Description

In this section we will describe the input formats, the extraction of the relevant details,
preprocessing, the implementation details of the LP’s, all implemented extensions, quality
of life functionality and the interface of the applications.

6.1.1 Input Formats

The program reads the map as an .ipe file. The .ipe file format is part of “The Ipe extensible
drawing editor”. A definition of the format can be found in the Ipe manual [Che19]. The
input file contains multiple polylines and text labels. Every border between countries or
a country and a body of water is represented as a polyline. All participating countries
of such a border are saved with the polyline. The boundary of every country c can be
constructed by taking the union over all polylines which form borders of c. Every country
is marked by a text label, which contains a three letter identifier and is placed inside the
boundary of a country.

The data sets are read in semicolon separated .csv format. The file includes a header
and every line specifies the name and country code of a region, as well as the value for
this region in every cartogram. Every column therefore contains the sizes of all regions
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6. Implementation

in a single cartogram, including a dummy column for the input layer. The values in this
column are ignored. It is assumed that the data does not contain missing values.

6.1.2 Preprocessing

From the .ipe input file of the map, the implementation creates a DCEL. A DCEL is a
“doubly connected edge list”, a commonly used data structure created to handle queries
and traversal on graphs. A detailed explanation of a DCEL can be found in any standard
textbook; we refer to the lecture notes of Mount [Mou07]. In a DCEL every edge is
represented by two darts, one of which is on either side of the edge and belongs to the
corresponding face. By iterating over all darts of a face, we can therefore find all faces
that share an edge with this face. From this we build an adjacency graph. At this stage
we do not guarantee that the resulting adjacency graph is planar, as countries can consist
of multiple disjoint polygons. This must be insured through the actual input map.

The center point of the bounding box of the polygon in the input map is used as the
original position of a region. The distance between two regions is measured between
these points. For a Demers cartogram we measure the x and y-distances between these
points. The separation constraint for two regions r, r′ is calculated as follows:

If |x(r) − x(r′)| > |y(r) − y(r′)| :

{

(r, r′) ∈ Sx If x(r) − x(r′) < 0

(r′, r) ∈ Sx Othw.

If |x(r) − x(r′)| ≤ |y(r) − y(r′)| :

{

(r, r′) ∈ Sy If y(r) − y(r′) < 0

(r′, r) ∈ Sy Othw.

In an iso-hexagon cartogram we calculate the separation constraints similarly:

i′ = max
|zi(r)−zi|

i ∈ {0, 1, 2}

{

(r, r′) ∈ Si′ If zi′(r) − zi′(r′) < 0

(r′, r) ∈ Si′ Othw.

Note that this can lead to extreme combinations of separation constraints, which are
not possible if the input is already a Demers cartogram or iso-hexagon cartogram. One
example is Figure 6.1a, which would lead to a non-planar embedding of the adjacency
graph. However many real life maps fulfill the criteria of an adjacency graph with a
planar embedding. Figure 6.1b is an example of the United States with the corresponding
planar embedding. This is also the map that was used for the evaluation of this system.

We also have to mention another caveat of this method. Since the primary separation
constraint is enforced based on distance instead of the already existing separating line, a
situation can arise in which two countries have a separating line in the input, however
we enforce the orthogonal separating line in the output. This method is not optimal,
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6.1. Description

r0

r1

r2

r3

(a)

WA

OR

MT

ID

WY

NV

CA

UT

CO

NM
AZ

KS

NE

SD

ND

MN

IA

MO

OK

TX

MI

INIL

WI

PA

OH

KY

ALMS

AR

LA

FL

GA

SC

NC

VA
WV

NY

ME

NH
VT

CT

MA
RI

NJ

DEMD

TN

(b)

Figure 6.1: (a) An extreme configuration in which countries are interior disjoint, but
the implied embedding of the adjacency graph connecting their centroids is not planar.
(b) The map of the united states, which was used for the evaluation. Here the implied
embedding is planar.

δy

δxRUS

KOR

Figure 6.2: The y-distance between Russia and the Republic of Korea is smaller than
their x-distance, however the input only contains a splitting line orthogonal to the y-axis.
The LP enforces the existence of a splitting line orthogonal to the x-axis, in the strong
setting additionally a splitting line orthogonal to the y-axis between the regions.

as it does not always match up with the perceived relative placement of countries. An
example of this situation is Figure 6.2, in which Russia and the Republic of Korea have a
separating line orthogonal to the y-dimension in the input and our method enforces a
separating line orthogonal to the x-dimension, despite not being present in the input.

By definition two regions have only a single separation constraint. If (r, r′) ∈ Sx then we
know that we enforce a separating line between r and r′, orthogonal to the x-axis. The
implementation of the strong setting of the Demers cartograms uses again the bounding
boxes of the input polygons and checks if there exists a separating line between the two
regions orthogonal to the y-axis. If this is the case, then we will also enforce the existence

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6. Implementation

of a second separating line in the output cartograms, by simply adding the separation
constraint for both dimensions.

The data is read in and saved for every region. We then normalize the data sets.
Depending on the semantic relation between the data sets we go about the normalization
in a different fashion. If the data sets are not related, e.g., if we want to visualize three
cartograms of the GDP per capita, the forest area and the average age of the prime
minister, we will encounter vastly different numbers. If we would take these numbers as
the area of the regions in the cartograms directly, we would end up with either a gigantic,
or a tiny cartogram. In order to handle this, we scale the data to a sensible minimal
and maximal size, s.t., the relative size differences in area value are kept intact. If we
however use time/series data sets, e.g., data sets which depict the same kind of data at
different points in time, we do not want all cartograms to be scaled to the maximum
and minimum value individually, because a trend of growing (or shrinking) maximal (or
minimal) values would not be visible in this case. We rather want to normalize these data
sets as a whole, in order to ensure comparability between regions of different cartograms.
If we encounter a data set with related and unrelated sets of columns, we can normalize
each set as one entity. This can be controlled with a command line argument as described
in Section 6.1.4.

As we interpret the data value as the desired area of the polygon which represents each
country, and the actual saved weight of a region is interpreted by the program as the
edge length of the polygon, we make a distinction between a Demers cartogram and
a iso-hexagon cartogram. Let wn(r) be the (normalized) data value of region r in the
data set and let wdem(r)/whex be the weights of the region which are saved inside the
program.

wdem =
√

wn

whex =

√

2 · wn

3
√

3

6.1.3 LP Implementation

The main part of this implementation is the implementation of the LP’s. All constraints
were implemented as they were defined in Chapter 4 using Java 8 and the linear program
solver IBM ILOG CPLEX Optimization Studio. In the following we will refer to these
constraints as follows:

• The constraint ensuring disjointness between polygons, by enforcing a minimal
distance between them is called the first constraint or disjointness constraint.

• The constraint that adds variables that enable the LP to minimize the distance
between adjacent regions will be called the second constraint or adjacency constraint.
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6.1. Description

• The constraint that enables the LP to determine a unique optimal solution in the
case of adjacent regions by minimizing the discrepancy of the slope in the input
and output will be called the third constraint or nuance constraint.

• The constraint that adds all variables to the LP, which are necessary to minimize
the distance between the original and the actual placement of a region will be called
fourth constraint or origin constraint.

• The constraint that adds the possibility of minimizing the distance between the
placements of regions in different cartograms will be called the fifth constraint or
stability constraint.

Every constraint is implemented in a way that it can be turned on or off, i.e., all
variables and (in)equalities needed for this constraint are either added to the LP or
not. The objective function minimizes only variables for which the constraints are
enabled. The information about enabled constraints is maintained as a boolean array
constraint_controls. If constraint_controls[i] is set to true, then the i-th
constraint is set to true. The stability controls, i.e., between which cartograms we
minimize the fifth constraint, are again implemented as described in Section 4.1.5. In the
complete and successive stability model, one LP for all cartograms is created, solved and
then used to extract the positioning of the regions in every cartogram. In the iterative
stability model, we create an LP for a single cartogram, solve it, extract the positioning
in this first cartogram and then use this placement as a constant value while instantiating
the LP for the next cartogram.

6.1.4 Interface

In this section we describe the interface of the implemented application.

Command Line Arguments

The behavior of the application can be controlled by the means of command line arguments.
Below we present a list of possible arguments, their usage and their behavior

• (-out “PATH/”) sets the output path for the produced cartograms and quality
measures. The results are exported as an .ipe file. The quality measures are
exported to a .json file.

• (-ipe “PATH/map.ipe”) sets the input .ipe file path.

• (-wgh “PATH/weights.csv”) sets the data .csv file path.

• (-min “o/d/c”) controls the minimization goal. The three presets differentiate
between minimizing the distance of a region to its original placement, minimizing
the distance between regions that should be adjacent and the number of lost
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6. Implementation

adjacencies, by setting the first four constraint controls accordingly. The fifth
control, concerning the stability model, is set by a different flag.

– “o” sets the constraint controls to {true, false, false, true, _____}

– “d” sets the constraint controls to {true, true, false, true, _____}

• (-opt “co/su/it”) sets the stability model of the implementation to either the
complete (co), the successive (su) or the iterative model (it).

• (-nostab) disables the stability constraint altogether by setting the constraint
controls to {_____ _____ _____ _____ false}. If this flag is not set, the
constraint controls are {_____ _____ _____ _____ false} by default.

• (-hex) switches the application from creating Demers cartograms to creating iso-
hexagon cartograms.

• (-a) enables the automatic mode which runs loads the map and data, creates the
LP model, solves it and writes the results to the specified output path

6.2 Experiments

In this section we describe the experimental setup and the results of the evaluation.

6.2.1 Setup

The experiments were run on a computing cluster with 16 nodes, each with 160GB RAM
and two 10-core Intel Xeon E5-2640 v4, 2.40GHz (i.e., 20 cores per node). The system
runs a Linux system with a kernel version 4.15.0. Our implementation uses IBM ILOG
CPLEX 12.8 to solve (integer) linear programs, each running on a single thread. Every
experiment had an allocated available memory space of 8GB. The produced logfiles (in
.json format) were analyzed, evaluated and visualized in Python 3.6.8, using the python
libraries pandas (0.24.2), numpy (1.16.4), json (2.0.9), matplotlib (3.1.1) and seaborn
(0.9.0).

All experiments were performed using the a modified map of the United States. This map
contains all US states excluding Hawaii and Alaska, and the following adaptions were
performed. Michigan, which consists of two big separate landmasses, one on each side of
Lake Michigan was connected up to consist of only a single polygon. All en- and exclaves
were removed as well as all islands. The territory of the reservations is counted as part of
the containing state. The area of Washington DC is counted as part of Maryland. The
map is displayed in Figure 6.1b.

For the experiments, we use four time series, of different (but overlapping) temporal
ranges, all of which are listed in Table 6.1. The Drug Poisoning Mortality data set is from
the Center for Disease Control and Prevention [Cen19]; the General Election Turnout
data set is from the United States Elections Project [McD19]; the GDP data set is from
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6.2. Experiments

Map Time series Years

US Drug Poisoning Mortality 2007–2016
US GDP 2007–2016
US General Election Turnout 1998–2016 (even years)
US Population 2011–2020

Table 6.1: Time-series data sets used in our experiments.

(a) Demers (b) Iso-Hexagon

Figure 6.3: Stability and quality measures averages over all created Demers cartograms
(a) and iso-hexagon cartograms (b) categorized by stability model.

the US Bureau of Economic Analysis [U.S19]; and the US Population data set is from
the US Census Bureau [U.S18]. From all data sets, we produced a fifth data set, which
contains one entry from each of the other data sets all in the same year. This data set
can therefore not be classified as time series as the data comes from the same year, but
has not necessarily a semantic connection.

All data were normalized to range with a specified minimum and maximum size for the
squares/hexagons. The sizes are dependent on the diagonal ∆ of the input bounding
box, i.e., the size of the smallest axis-aligned rectangle that contains all bounding boxes
of the input polygons. The maximum size of a rectangle is 30∆ while the minimum size
is set to ∆

20 .

6.2.2 Results

The first distinction we want to look at is the impact of the chosen stability model on the
evaluation results of the produced cartograms. For this we measured the average center
and corner travel distance, number of lost adjacencies, origin displacement and stability
score after Sondag et al. over all cartograms produced with the same stability model.

Table 6.2 shows the number of lost adjacencies, while Figure 6.3 shows the four mea-
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6. Implementation

Stability Model Demers cartograms iso-hexagon cartograms

complete 62.680 56.880
iterative 61.900 56.580

successive 62.795 56.335
no model 61.095 56.000

Table 6.2: Average number of lost adjacencies over all created Demers cartograms and
iso-hexagon cartograms categorized by stability model.

(a) Demers (b) Iso-Hexagon

Figure 6.4: Box plot of stability and quality measures averages over all created Demers
cartograms (a) and iso-hexagon cartograms (b) categorized by minimization model.

sures. It can clearly be seen that the differences between the four different possible
stability models (complete, successive, iterative, no stability constraint) is negligible.
The conclusion which we draw from this is that the restriction imposed by the other
enabled constraints are already resulting in considerably stable cartogram layouts. We
will restrict our analysis on the basis of this observation to the case in which we do not
enable any stability constraint.

The next comparison is between the different methods of optimizing a cartogram. We
run our experiments with two different settings, i.e., minimizing the distance between the
original location and the placement in a given cartogram and minimizing the distance
between regions which ought to be adjacent. We call these two methods the origin model
(o) and distance model (d). Again we accumulated all runs of the same model and plotted
their averages as well as box plots for the four taken measures, displayed in Figure 6.4.
Runtimes and lost adjacencies are reported in Table 6.3.

We can see some differences between the two models, however before reporting on these
differences we want to point out that the origin model of minimization is dependent on
the scaling of the data. Extremely small maximal values would result in low (possibly
no) overlap. This enables every region to be placed at its initial position without being
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6.2. Experiments

Type (minimization model) # lost adjacency Solve time of LP (in seconds)

Demers cartograms (d) 47.00 3.066
Demers cartograms (o) 76.55 2.501

iso-hexagon cartograms (d) 56.50 7.133
iso-hexagon cartograms (o) 56.25 2.566

Table 6.3: Average number of lost adjacencies over all created Demers cartograms and
iso-hexagon cartograms categorized by stability model.

moved. Extremely large scaling on the other hand would result in necessarily big values
of displacement from the origin simply to fulfill disjointness. Note that the method of
minimizing distances between supposedly adjacent distances is not similarly dependent
on the extent of the scaling.

With this in mind we turn to the discrepancies between the Demers cartogram and iso-
hexagon cartogram experiments. While we can see a lower value in origin displacement
for the origin model in both cases, which is expected as this is the primary minimization
goal of the model, the difference observed in the Demers case is significantly bigger than
in the iso-hexagon case. At the same time we can see no difference in the number of
lost adjacencies in the iso-hexagon cartograms, while the Demers cartograms show a
sizable gap of almost 30. From this we conclude that the square shape of the regions
in combination with the grid like topography of the US states enabled more states to
be placed initially at their origin without causing overlap and therefore without reason
to move and to create contact with adjacent regions. This is an example of the scaling
dependency of the origin model.

The measures taken are a try to capture the quality of a cartogram with a metric.
It is however irreplaceable to compare the created maps themselves visually, since a
measurement can only go so far in trying to capture the resemblance of a map to its
original topology. We will therefore present on the next pages some of the created maps.
We present Demers cartograms and iso-hexagon cartograms for the first and third data
set (see Table 6.2). All cartograms were created using no stability constraint and either
the origin or the distance model.
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Figure 6.5: Demers cartograms of the drug mortality rate in the US by state. Created
using the origin model, without stability constraint.
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Figure 6.6: Demers cartograms of the drug mortality rate in the US by state. Created
using the distance model, without stability constraint.
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Figure 6.7: Demers cartograms of the general election turnout in the US by state. Created
using the origin model, without stability constraint.
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Figure 6.8: Demers cartograms of the general election turnout in the US by state. Created
using the distance model, without stability constraint.
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Figure 6.9: Iso-hexagon cartograms of the drug mortality rate in the US by state. Created
using the origin model, without stability constraint.
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Figure 6.10: Iso-hexagon cartograms of the drug mortality rate in the US by state.
Created using the distance model, without stability constraint.
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Figure 6.11: Iso-hexagon cartograms of the general election turnout in the US by state.
Created using the origin model, without stability constraint.
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Figure 6.12: Iso-hexagon cartograms of the general election turnout in the US by state.
Created using the distance model, without stability constraint.
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6. Implementation

1 1

(a)

2

(b)

2

(c)

Figure 6.13: Configuration of squares which are indistinguishable in quality by simply
minimizing the distance between adjacent regions. A red arrow between squares indicates
a lost adjacencies. In all three cases the sum of the distance between adjacent regions is
2, however in cases (b) and (c) only one adjacency is lost.

6.3 Proposed Extension

A already mentioned, minimization of the distance between adjacent regions is not
sufficient to guarantee a minimum of lost adjacencies. Assume the existence of four
regions as depicted in Figure 6.13. The sum of distances between adjacent regions is 2
in all three cases, even though in the first case, we lose one adjacency more than in the
other two.

An approach to handle this problem can be to introduce a boolean variable dc into
the linear program, i.e., a variable with value either 0 or 1. We will call this approach
the count model. This changes the linear program into a mixed integer program, as it
contains real and integer number variables. We will sketch the theoretical idea behind
this approach for the Demers cartograms, but it can easily be adapted to the iso-hexagon
cartograms. Let δ be the minimal distance that two regions r1, r2 must have due to their
size and the disjointness constraint. Let (r1, r2) ∈ Sx. Then we want the differences
|x(r1) − x(r2)| and |y(r1) − y(r2)| to be smaller or equal to δ. In fact x(r1) − x(r2) needs
to be exactly δ as that is its minimal value. If this is not the case, we will subtract
sufficiently big constant Cc, which is chosen such that the displacement can not possibly
be bigger than this constant. This can for instance be the sum of all widths over all
regions plus the minimal distance between non adjacent regions multiplied by the number
of regions. Whether Cc is subtracted or not is controlled by setting the value of dc. The
constraint is as follows

|x(r1) − x(r2)| − w(r1) + w(r2)
2

− (dr1,r2

c · Cc) ≤ 0

|y(r1) − y(r2)| − w(r1) + w(r2)
2

− (dr1,r2

c · Cc) ≤ 0

The number of times, we need to set the variable dc to 1 corresponds to the number of
lost adjacencies. We can therefore minimize the sum over all dc variables.
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6.3. Proposed Extension

(a) (b) (c)

Figure 6.14: Measured average lost adjacencies (a), stability (b) and runtimes of the MIP
in comparison to the distance and origin model.

min
∑

{r1,r2}∈T
dr1,r2

c

We performed exploratory experiments on two data sets—the data set containing infor-
mation about the drug poisoning mortality in the years 2007 to 2016 and the mixed
data set—and results show that minimizing the number of lost adjacencies leads to
cartograms with a lower number of lost adjacencies (see Figure 6.14a). However the
stability measures show mostly worse results than the other methods of optimization.
The stability score of Sondag et al. shows significantly higher instability, while corner
and center movement are slightly worse. The origin displacement is slightly better than
compared to the distance model. Stability measures are displayed in Figure 6.14b. As
already mentioned in Chapter 2, introducing boolean variables into the program can
have an immense effect on the runtime. This also occurs in our experiments. As can
be seen in Figure 6.14c, the runtimes increased by one order of magnitude. It is to be
expected that if this method is applied to a bigger map, e.g., that runtimes could easily
exceed multiple hours.

Finally we present on the next pages the cartograms that show the drug mortality rate
in the US between 2007 and 2016 and were created using no stability constraints and the
count model.
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6. Implementation
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Figure 6.15: Demers cartograms of the drug mortality rate in the US by state. Created
using the count model, without stability constraint.
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CHAPTER 7
Conclusion

As we have shown in this thesis, there are multiple ways to approach the creation of a
cartogram, even when using the same method of creation. We have presented a method
of creating stable cartograms by enforcing separational constraints, which keep relative
directions between regions. We have further proven the NP-hardness of generalized
problems which do not enforce such separational constraints. Our experimental results
suggest that enforcing the separational constraints results in reasonably stable cartograms.

There are several open questions left to answer. On the theoretic side, we built on already
existing knowledge of NP-hardness and completeness for certain problems. We have
seen that the deciding whether a graph has a proper square contact representation is
NP-complete, as is deciding whether a graph has a hexagon contact representation. These
were simply generalized cases of the actual underlying problem of deciding whether a
given graph has a proper square contact or a hexagon contact representation that satisfies
a set of separation constraints. The hardness of these questions remains open. Moreover
the question of the existence of contact representations of a given graph with any given
set of (possibly different) regular polygons is also unanswered.

Obviously the extension from Demers cartograms to iso-hexagon cartograms can be
followed to its logical generalization of iso-k-gon cartograms, for which we can ask all
the same questions. Excluding this generalization, there are common features of maps,
which are notably absent in a visualization with a Demers cartogram or a iso-hexagon
cartogram. A number of countries, consist of a collection of larger islands, a topographical
feature, which is not at all represented in our version of these cartograms. The same is
true for en- and exclaves. Relationships between different continents are also of interest
as the inherent distance of countries separated by an ocean is an important geographical
feature, which might be lost in our cartograms. There are multiple ways of handling
this particular feature, e.g., by trying to minimize diversion from a desired distance
for non-adjacent regions instead of simply minimizing distance between adjacent ones.
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7. Conclusion

Alternatively, big bodies of water could be represented by dummy regions of desired size,
which are then omitted in the final cartogram.

We have seen that certain scenarios force adjacencies to be lost. We presented visual aid
to identify these lost adjacencies in the form of the leader lines and gave an upper bound
on their length. It might be of interest to identify a similar bound for the complexity of
such a leader line, if possible. Further under the assumption of additional restrictions,
e.g., bounding the maximal number of neighbors for a given region, different options of
visualizing the adjacency might be attractive.

In our evaluation section we have mentioned that origin model has the inherent flaw of
being dependent on the scaling of the regions, even though it seems to be advantageous,
when judges by its stability. In a visual comparison, we claimed that the overall shape
of the underlying map seems to be better replicated by the distance model. It would
be desirable to identify an additional measure which captures this replication of the
underlying topology.

The model presented in this thesis tried to better stability with an additional constraint
which turned out to underperform. We concluded that the additional stability gained
from this constraint is negligible in comparison to the already existing stability of
cartograms which fulfill the separation constraints. There might however be different
approaches to guarantee stability altogether. Also there are several assumptions made in
this thesis which can be approach a different way. To name just one, the decision made
about the separation constraint could be improved with one of the mentioned methods
of determining the relative placement of countries. The experimental result that the
enforcement of the stability constraint has no significant impact on the quality of the
generated maps must also be considered with the fact in mind that the used data sets
were time-series data sets and the changes from one layout to the next in these data sets
are not as radical as if we would compare unrelated data sets. Moreover the underlying
map of the United States is expected to lend itself nicely to Demers cartograms and
iso-hexagon cartograms due to its grid-like structure. Further analysis and evaluation
with different maps and data sets is necessary.

We hope to see other results in this area and aim to extend our results in further work.
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5.7 Placement areas for regions in Lmin. In an extreme case, the union of all
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which can be arbitrarily small. Note that the area of (c) is strictly included
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