
Vienna Verification Tool:
IC3 for Parallel Software

Henning Günther?, Alfons Laarman, and Georg Weissenbacher

TU Wien, Austria? ? ?

Abstract. Recently proposed extensions of the IC3 model checking al-
gorithm offer a powerful new way to symbolically verify software. The
Vienna Verification Tool (VVT) implements these techniques with the
aim to tackle the problem of parallel software verification. Its SMT-based
abstraction mechanisms allow VVT to deal with infinite state systems.
In addition, VVT utilizes a coarse-grained large-block encoding and a
variant of Lipton’s reduction to reduce the number of interleavings. This
paper introduces VVT, its underlying architecture and use.

1 Verification Approach

VVT is an implementation of the CTIGAR approach [2], an SMT-based IC3
algorithm [3] incorporating Counterexample Guided Abstraction (CEGAR) [5],
thus enabling the verification of infinite-state systems. The underlying abstraction-
refinement scheme follows the IC3 paradigm, as it does not require an unwinding
of the transition relation. To handle parallel programs, VVT uses a large-block
encoding [8] that preserves all relevant partial interleavings by applying a novel
dynamic variant of Lipton’s reduction [10].

2 Software Architecture

VVT uses a modular approach to verification: a collection of separate tools
instrument and translate the input, communicating via standard data formats
such as LLVM bitcode [4] and the SMTlib format [1]. Fig. 1 provides an overview.

The verification process begins by compiling the C file into LLVM bitcode
using CLang. The LLVM IR has a precise semantics and comprises only a small
number of instructions, thus reducing the complexity of the verifier. The increase
in size resulting from the translation into bitcode is mitigated by subsequent
reduction steps. A separate tool implementing a variant of Lipton’s reduction
(see footnote 1) uses static analysis to identify large blocks that can be executed
atomically. These blocks are delimited by instrumenting the code with ‘yield’

? ? ? This work is supported by the Austrian National Research Network S11403-N23
(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Tech-
nology Fund (WWTF) through grant VRG11-005.

? Corresponding author



C-file CLang
Lipton

reduction
SMTLib

Encoding

LLVM Alias Analysis

Optimization IC3

Z3 MathSAT

Result

LLVM bitcode

Fig. 1. Architecture

function calls, indicating the relevant context switches. A dynamic reduction
is achieved by means of branching statements. At each intermediate step the
LLVM tool chain is used to optimize the bitcode (not shown in the figure).

Next, the vvt-enc tool translates the instrumented bitcode into an SMTlib-
based format, encoding the transition relation of the program. To finalize the en-
coding, the vvt-opt tool deploys a number of optimization techniques including
program slicing (removing irrelevant parts of the transition relation), expression
simplification and a value-set analysis (to identify constant expressions).

The last step is the actual verification with the vvt-verify tool. It uses Z3 [6]
for IC3 consecution calls [3] and MathSAT [7] for interpolation-based refinement.
To rapidly find counterexamples, VVT runs a small portfolio with the BMC tool
vvt-bmc [9] on the same encoding, taking advantage of the modularity of the
tool chain.

3 Strengths and Weaknesses

VVT primarily targets the verification of infinite parallel programs. Unlike BMC
tools, the approach is complete and does not depend on a complete unrolling of
the transition relation thanks to the underlying IC3 algorithm. The SMT-based
abstraction-refinement scheme further extends the capabilities of the tool to
infinite-state systems. Finally, parallelism is supported by the reductions applied
to the transition relation.

Our experiments show that VVT yields good results on almost all instances of
the concurrency category of the Software Verification Competition (SVCOMP)
2016. The verification results for integer/control-flow programs demonstrate that
the abstraction-refinement mechanisms work well in practice.

VVT currently does not implement rely-guarantee reasoning, and is therefore
unable to handle an infinite number of threads. Furthermore, the lack of an
interpolating decision procedure for arrays limits the applicability of the tool
for programs with arrays to those cases where the size of the arrays can be
determined statically.

VVT generates concrete counterexample traces, but does not yet map the
LLVM instructions to locations in the original source code.

2



4 Tool Setup and Configuration

The Vienna Verification Tool is open source and distributed under the GPL
license. The source code can be found on GitHub.1

Installation. The packaged binaries of VVT v0.1 are available at

https://www.dropbox.com/s/9ms4e9ye0hnems1/vvt.tar.xz .

The required packages LLVM 3.5 and CLang 3.4 need to be installed on the
system and are available via a standard package manager (APT, RPM, etc) on
many systems.

The command vvt-svcomp-bench.sh <FILE> starts the entire verifier tool
chain (see Fig. 1), where <FILE> is the C or C++ file to be verified.
Participation Statement. For the SVCOMP 2016, we enlist VVT for participa-
tion in the categories Integers and Control Flow and Concurrency. In the former,
we opt out of the sub-categories: recursive, loops, product lines, and sequential-
ized. We also opt out VVT of the other (unmentioned) categories.

5 Software Project and Contributors

VVT is developed by the Formal Methods in Systems Engineering (FORSYTE)
group of the Vienna University of Technology. Bug reports can be submitted at
the VVT GitHub page.1

References

1. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. In A. Gupta and D. Kroening, editors, SMT Workshop, 2010.

2. Johannes Birgmeier, Aaron Bradley, and Georg Weissenbacher. Counterexample
to induction-guided abstraction-refinement (CTIGAR). In CAV, volume 8559 of
LNCS, pages 829–846. Springer, 2014.

3. Aaron R. Bradley. SAT-based model checking without unrolling. In VMCAI,
volume 6538 of LNCS, pages 70–87. Springer, 2011.

4. Chris Lattner and Vikram Adve. The LLVM Instruction Set and Compilation
Strategy. Tech Report UIUCDCS-R-2002-2292, Univ. of Illinois, Aug 2002.

5. Edmund et al. Clarke. Counterexample-guided abstraction refinement. In Com-
puter aided verification, pages 154–169. Springer, 2000.

6. Leonardo de Moura and Nikolaj Børner. Z3: An Efficient SMT Solver. In TACAS,
volume 4963 of LNCS, pages 337–340. Springer, 2008.

7. Alessandro Cimatti et al. The MathSAT5 SMT Solver. In Nir Piterman and Scott
Smolka, editors, TACAS, volume 7795 of LNCS. Springer, 2013.

8. Dirk Beyer et al. Software model checking via large-block encoding. In FMCAD,
pages 25–32. IEEE, 2009.

9. Henning Günther and Georg Weissenbacher. Incremental bounded software model
checking. In SPIN, pages 40–47. ACM, 2014.

10. Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, December 1975.

1 VVT can be downloaded at https://github.com/hguenther/vvt. The tool to infer
atomic blocks is available at https://github.com/alaarman/Liptonizer

3

https://www.dropbox.com/s/9ms4e9ye0hnems1/vvt.tar.xz
http://llvm.org/releases/download.html#3.5.2
www.forsyte.at
https://github.com/hguenther/vvt
https://github.com/alaarman/Liptonizer

	Vienna Verification Tool:IC3 for Parallel Software

