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Kurzfassung

Diese Arbeit befasst sich mit der Problematik der Wiederverwendung von alloziertem
Speicher im Kontext von nebenläufigen Datenstrukturen. Speicherverwaltung ist ein
wesentlicher Aspekt in fast allen shared-memory concurrent Datenstrukturen und Algo-
rithmen, bestehend aus Allokation und Freigabe bzw. Wiederverwendung von Resourcen.
Speziell die Freigabe bzw. Wiederverwendung nicht mehr benötigter Objekte stellt eine
große Herausforderung dar und ist daher nach wie vor ein aktives Forschungsgebiet. Diese
Arbeit bietet einen ausführlichen Überblick über den aktuellen Forschungsstand und
beschreibt einen Großteil der aktuellen Reclamation Schemata. Desweiteren wird ein
neues Schema namens Stamp-it vorgestellt.

Einige der beschriebenen Reclamation Schemata wurden in C++ implementiert. Die
Implementierung basiert auf einem generalisierten, abstrakten Interface, welches für den
C++ Standard vorgeschlagen wurde. Es wurden die folgenden Schemata implementiert:
Lock-free Reference Counting, Hazard Pointers, Quiescent State-based Reclamation,
Epoch-based Reclamation, New Epoch-based Reclamation und Stamp-it. Ausführliche
Erklärungen der Implementierungen werden ebenso präsentiert wie Argumente zu ihrer
Korrektheit, basierend auf dem C++11 Speichermodell.

Die implementierten Schemata wurden in einer umfangreichen, experimentellen Ana-
lyse untersucht. Es wurden sowohl neue, als auch häufig genutzte Benchmarks auf vier
verschiedenen shared-memory Systemen eingesetzt. Die Ergebnisse zeigen, dass Stamp-it
in den meisten Fällen vergleichbare, in einigen Fällen auch bessere Performance bietet
als andere Schemata.
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Abstract

This thesis deals with the aspect of memory reclamation in concurrent data structures.
Memory management is a critical component in almost all shared-memory, concurrent
data structures and algorithms, consisting in the efficient allocation and the subsequent
reclamation of shared memory resources. Especially the reclamation of no longer used
memory becomes a real challenge in the face of concurrent lock-free data structures,
and therefore this is still a very active research topic. This work provides an extensive
overview over the current state of the art, and also presents yet another reclamation
scheme called Stamp-it.

Some of the discussed reclamation schemes have been implemented in C++, based
on a generalized, abstract interface that has been proposed for the C++ standard. The
implemented schemes are: Lock-free Reference Counting, Hazard Pointers, Quiescent
State-based Reclamation, Epoch-based Reclamation, New Epoch-based Reclamation
and Stamp-it. A detailed discussion of these implementations is provided, including
correctness arguments based on the the C++11 memory model semantics.

The implemented schemes have been analyzed in an extensive, experimental evaluation,
presenting results for both new and commonly used benchmarks, on four different shared-
memory systems with hardware supported thread counts ranging from 48 to 512. The
results show Stamp-it to be competitive with and in many cases and aspects outperforming
other schemes.
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CHAPTER 1
Introduction1

The clock speed of processors has stagnated for several years now. Since it turns out to
be difficult to further increase the performance of a single-core CPU, the tendency is to
provide more and more cores per CPU to gain performance by parallel execution.

Traditionally, multi-threaded programs use mutual-exclusive locks for synchronization,
but with the growing number of cores the efficiency of this approach becomes worse since
the lock operations get serialized and the threads tend to spend a lot of their time waiting
for some lock. Although recent results showed that in many cases blocking data structures
can be practically wait-free [DG16], the need for alternative data structures that are
actually lock-free or even wait-free (or at least hybrids, i.e., partially lock-/wait-free)
becomes more and more important.

1.1 Progress guarantees
Mutual exclusion via locks may be easy and intuitive, however it has several drawbacks.
Acquiring a lock usually requires a considerable overhead even if it is not contended.
But in case of contention performance is even worse as the whole execution serializes
and threads have to wait for the lock to be released. If a thread dies, stalls, blocks, or
enters an infinite loop while holding a lock, the whole process will deadlock when another
thread tries to acquire the lock.

A better alternative are so called non-blocking data structures that provide progress
guarantees so that eventually every thread will be able to finish its operation. Non-
blocking data structures are further divided into lock-free and wait-free data structures
and the respective guarantees are defined as follows:

Lock-freedom: An algorithm is lock-free if it guarantees that infinitely often some thread
finishes in a finite number of steps. Therefore, lock-freedom permits individual
threads to starve but still guarantees system-wide progress.

1The results of this thesis have been the basis of a technical report [PT17], as well as a poster [PT18]
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Wait-freedom: An algorithm is wait-free if it guarantees that every thread finishes its
execution in a finite number of steps. Wait-freedom implies lock-freedom, so all
wait-free algorithms are also lock-free.

Developing lock-free and wait-free data structures is an active research topic and a
growing number of various lock-free and wait-free data structures has been published,
like lists [Har01], queues [MS96], dequeues [ST05], hash maps [Mic02], binary search
trees [EFRvB10], and many more.

There are also a number of data structures that cover the “middle ground”, i.e., they
have operations that require a lock (usually operations that change the data structure
like, e.g., insertion/removal of elements in a hash map) as well as operations that are
lock/wait-free (e.g., looking up a key in a hash map).

1.2 Memory reclamation

Memory management is an essential part of every data structure that supports dynamic
insertion and removal of entries. It involves two different tasks: memory allocation (i.e.,
reserving memory for exclusive use for the caller) and memory reclamation (usually
this means returning previously allocated memory to the memory manager). Efficient
memory allocation is a complex topic of its own—especially when concurrency comes into
play—and a large number of memory allocators has been designed and published, like
Hoard [BMBW00], Google’s TCMalloc [GM11] or FreeBSD’s [Eva06]. But this is not
the topic of this thesis. Instead, the focus is on memory reclamation, in particular on the
problem of deciding when it is safe to reclaim the memory of a particular allocation, i.e.,
when is it guaranteed that no thread can possibly hold a reference to this allocation and
how can this be determined. While this is relatively simple for single-threaded applications,
it becomes a real challenge in the face of concurrent lock-free data structures.

This is due to the fact that it is usually unknown which threads may still hold a
reference to a node that has already been removed from the data structure. Freeing the
node while other threads still hold a reference to it could lead to a crash or undefined
behavior if one of the threads later tries to access the node’s memory. Therefore a
reclamation scheme for lock-free data structures has to ensure that whenever a thread
removes a node from the data structure, the memory occupied by this node will eventually
be reclaimed (e.g., returned to the memory manager) and no other concurrently running
thread will access the deallocated memory.

A number of schemes have been proposed for identifying allocations that can safely
be reclaimed, i.e., how to determine whether there are any threads still holding references
to these allocations. Many of these schemes are described in the course of this thesis.

With the release of the Intel Haswell architecture in 2013, hardware transactional
memory (HTM) has finally found its way into modern mainstream processors [R.12].
While the current implementation still has some limitations, the rise of transactional
memory opens up a lot of new possibilities—not only in the design of non-blocking data
structures, but also for memory reclamation schemes like, e.g., StackTrack [AEH+14]
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(see Section 2.11). Dragojević et al. dedicated a whole paper to the topic of how HTM
could help to simplify memory management [DHLM11].

1.3 Garbage collection

Many modern languages like Java or C# provide automatic garbage collection2. In these
languages the memory reclamation problem can simply be delegated to the garbage
collector, which makes development of lock/wait-free data structures much easier.

There has been much work on parallel garbage collectors [ABFR11, FDSZ01] as well
as garbage collectors that obtain some partial guarantee for progress [ABC+08, HM92,
HM01, PFPS07, PPS08, PZM+10]. However, to my knowledge current literature does
not offer garbage collection that can perform a full-scale lock-free garbage collection over
the entire heap [Pet12].

While state-of-the-art garbage collectors can ensure the progress of the program itself,
they all fail to guarantee the progress of the collector itself, causing an eventual failure of
allocations and the entire program.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides an extensive
overview over the current state of the art, describing many of the currently known
reclamation schemes. It also introduces my new reclamation scheme called Stamp-it.
Chapter 3 discusses the topic of memory models, explaining why they are important in a
concurrent context, and providing a brief introduction into the memory models of the
x86 and ARM/POWER CPU architectures. However, the focus of this chapter lies on
Section 3.3, which provides a more detailed overview over the C++11 memory model.
Chapter 4 discusses an adapted version of the generalized C++ interface proposed by
Robison [Rob13], and provides a detailed discussion of the implemented reclamation
schemes and data structures. It also includes correctness arguments for all the implemen-
tations based on the C++11 memory models’ semantics. Based on these implementations,
Chapter 5 presents a large scale experimental study, comparing the performance of the
implemented reclamation schemes on four different architectures in various scenarios.
Finally, Chapter 6 summarizes the results of this work and draws conclusions.

1.5 Prerequisites

Aside from memory reclamation, this thesis also touches the topic of memory models
and provides a detailed discussion of the C++ implementations of some reclamation
schemes and data structures. Due to the broad nature of these areas, it is not possible to

2Strictly speaking this is not a feature of the language itself, but of the underlying runtime environment
such as the Java VM and the .NET runtime. Therefore, all the other languages that are built on top of
these systems also benefit from automatic garbage collection.
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explain all the details that are touched in the course of this work. I provide references to
important concepts that are outside the scope of this work, but in order to be able to
easily follow the all explanations, the reader should have some prior knowledge in the
following areas.

For Chapter 2, the reader should have a basic understanding of the concept of POSIX
signals, as they are used by some of the described reclamation schemes.

To follow the explanations in Chapter 3, a basic understanding of modern CPU
architectures including caches and out-of-order execution is required.

The implementations described in Chapter 4 are all done in C++. A thorough
understanding of C++, including features introduced in C++11 like “move semantics”
and concepts such as “Resource Acquisition Is Initialization” (RAII), is recommended.
In order to fully understand all the details of the implementations, the reader should also
have a good understanding of C++ templates, including more advanced techniques used in
template-metaprogramming like “template specialization”, “template aliases”, “template
template parameters” or the “Curiously Recurring Template Pattern” (CRTP) [Cop95].

Chapter 4 also provides correctness arguments for the implementations, based on
the C++11 memory model. To follow these arguments, a good understanding of this
memory model is essential; Section 3.3 should provide the basis for that.
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CHAPTER 2
Memory Reclamation Schemes

The memory reclamation problem has been around for decades. So over the years a large
number of solutions have been proposed. The following sections provide an overview over
most of them, starting with lock-free reference counting (Section 2.1) from the early 90’s
to very recent proposals like QSense (Section 2.16) from 2016. And with Stamp-it I bring
yet another solution to the table that is discussed in more detail in Section 2.17.

2.1 Lock-Free Reference Counting
Reference counting is a well known concept that has been used for decades. The first
reclamation scheme for lock-free data structures based on reference counting was presented
by John D. Valois in [Val95]. The original proposal contained race conditions that were
discovered and corrected by Maged M. Michael and Michael L. Scott [MS95].

For this reclamation scheme each node is equipped with an integer field that is used
to track the number of references to the node. Each thread is responsible for updating
this reference counter accordingly—incrementing it for each new reference, decrementing
it for every dropped reference. The increment is implemented using a simple atomic
fetch-and-add operation. The decrement, however, is more complicated and has to be
implemented using an atomic compare-and-swap (CAS); the reason for this is explained
later. When the reference counter drops to zero there are no more references to this node
and it can therefore be reclaimed. Like most reference count systems, this method is
usable only with acyclic structures, since circular structures are vulnerable to memory
leakage. For example two nodes that build a cycle (i.e., that reference each other) prevent
the reference counter from dropping to zero. When the last thread releases its references
to any of the two nodes the reference counter of that node is still one (due to the reference
held by the other node). Therefore, the node is not reclaimed and the nodes are effectively
leaked.

Although lock-free reference counting (LFRC) avoids locks it cannot guarantee
an upper bound on the amount of memory consumed by removed nodes, since every
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thread can hold an arbitrary number of references to nodes. It has been shown by
Michael [Mic04a] and Hart et al. [HMBW07] that reference counting produces a large
overhead that often makes lock-free data structures perform worse than lock-based
versions.

There are several other proposals for systems based on this reference counting scheme.
Detlefs et al. [DMMJ01] allow changing the node’s type upon reclamation but require a
double-compare-and-swap operation (DCAS)1, which is usually not supported by current
CPUs. Another scheme proposed by Sundell [Sun05] is wait-free. Both schemes are
described in more detail in the following sections.

In order to move from one node to the next (e.g., in a linked list) a thread has to
perform the following steps:

1. Read the reference to the next node.

2. Increase the reference counter of the next node.

3. Reread the reference to the next node and check whether it has changed in the
meantime.

a) If it has changed, decrease the reference counter of the next node, drop the
reference and start again at Step 1.

b) Otherwise the thread has a safe reference to the next node.

In this sequence there is a race condition between Step 1 (reading the reference) and
Step 2 (incrementing the reference counter). It could happen that between these two steps
the node’s reference counter drops to zero (due to another thread releasing its reference)
and therefore the item becomes reclaimable. In Step 2 the thread would increment the
reference counter of a potentially reclaimed node.

To overcome this race condition Step 3 rereads the reference to the next node to
ensure that it has not changed in the meantime. In case it has changed the thread has to
restart the whole procedure.

Due to the described race condition, LFRC cannot be used as a general reclamation
scheme where reclaimed memory can be reused arbitrarily. However, LFRC can be
used in situations where reclaimed nodes are reused in the same data structure. This is
possible because the scheme expects a node’s reference counter to be available indefinitely.
Therefore, it is possible to update the reference count on a potentially reclaimed node
without corrupting the data structure. This would not be the case if the memory was
reused otherwise.

In order to reuse reclaimed nodes in the same data structure, a special free-list is used.
When a thread wants to decrement the reference count it checks whether it is currently

1A double-compare-and-swap (DCAS) operation is a CAS operation that atomically compares and
updates two not necessarily contiguous memory locations. This should not be confused with the double-
width CAS (DWCAS), that atomically compares and updates two adjacent pointer-sized memory locations.
In contrast to DCAS, such DWCAS operations are actually provided by some processor architectures
like, e.g., CMPXCHG16B on Intel x86.

6



dropping the last reference and if that is the case tries to set the “claim bit” (usually
the LSB of the reference counter) in a single atomic compare-and-swap operation. The
thread that successfully sets the claim bit can then safely push the node on the free-list.

The free-list is usually implemented as a LIFO singly-linked list. The reference
counting schema is also used to avoid the ABA problem2 when trying to pop a node
from the list.

Unfortunately, reference counting is prone to false sharing3 as the reference counter
is part of the node. Usually other members of a node follow immediately in memory so
it is very likely that they share the same cache line. Acquiring or releasing a reference
to a node always requires updates of the reference counter and therefore invalidates the
whole cache line. This could be avoided by introducing the necessary padding, but at
the cost of higher memory overhead.

Another reason for the high overhead is the global free-list that is shared by all
threads. The fact that all threads operate on the same list (pushing reclaimed nodes,
trying to pop nodes for reuse) can lead to high contention. A very simple way to
reduce contention on the shared list would be to use fixed-size thread local free-lists as
buffer. Both improvements, the padding as well as the thread-local free-lists, have been
implemented for this work. The performance analysis is presented in Section 5.1.

Problems with circular references mark another drawback that is shared by all
reference counting based schemes.

2.2 Wait-Free Reference Counting

This schema, proposed by Sundell [Sun05] in 2005, is an adaption of the Lock-Free
Reference Counting scheme from Valois to support wait-free execution.

There are essentially two reasons why LFRC is not wait-free:

• LFRC allows increments of the reference count field of possibly reclaimed nodes
and verifies afterwards that the pointer still points to the same node. If that is not
the case the reference count is decremented and the de-reference scheme is repeated.
However, the number of repeats is unbounded.

• Since LFRC does not qualify as a generic reclamation scheme reclaimed nodes are
kept in a special free-list which is usually implemented as a LIFO single linked

2The ABA problem [IBM83] can occur when a CAS operation is used to update a data structure.
Suppose a lock-free stack implemented as a singly-linked list with the values [A,B,C], where A is on top
of the stack. In order to pop an entry a thread reads the pointer to the head followed by the entry’s next
pointer and then uses a CAS operation to update the head with the next pointer’s value. Suppose a
thread loads the head (pointing to A) and its next pointer (pointing to B). Then some other thread pops
A and B from the stack and then again pushes A resulting in [A,C]. When the first thread now continues,
the CAS operation would expect the head to point to A, which is the case, and therefore happily update
the head with a pointer to B.

3False sharing occurs when processors in a shared-memory system make references to different objects
within the same coherence block (e.g., a cache line or page) and one of the objects gets altered. This may
force the other processors to reload the whole block although it is not logically necessary as the other
objects remain unchanged [BS93].
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list. The push and pop operations of such a list can be implemented using a simple
compare-and-swap, but care has to be taken about the ABA problem. However,
the number of repeats that are required to successfully complete either operation
are unbounded.

In order to make the reference counting scheme wait-free, Sundell proposed a solution in
which threads announce certain operations together with a helping scheme that guarantees
an upper bound on the number of steps to successfully complete the operation.

Before a thread attempts a de-reference operation it announces the location of the
link it is about to read.

A concurrent operation that has changed a link is obliged to check for possible
announcements before if decrements the reference count of the node the link previously
pointed to. If an announcement matches the changed link, the concurrent operation
should then provide the de-referencing operation with the address of a node that has a
positive reference count and was recently pointed to from the link. This can be done by
using the same shared variable that was used for announcing the pending de-referencing
operation.

However, using the same shared variable for announcing several subsequent de-
reference operations can potentially cause the ABA problem. In order to avoid this, a
pool of shared variables is used to announce pending de-referencing operations. The pool
continuously keeps track of which shared variables have a pending compare-and-swap
operation from a concurrent helping operation, and only allows use of shared variables
for new announcements that have no pending compare-and-swap attempts for answering.

In the original LFRC proposal the global free-list is implemented as a singly linked-list,
therefore all threads operate on the same head node. However, this is problematic for
wait-free algorithms since a successful CAS for one operation means that all the other
concurrent CAS attempts will possibly fail. Thus, some operations might need to perform
a potentially unbounded number of retries.

The free-list has to provide two methods: AllocNode to fetch a new node from the
free-list and FreeNode to add a reclaimed node to the free-list. The key idea of this
solution is to have several free-lists and to force the operations to work on different parts
of them. In addition helping mechanisms are used to guarantee that each thread is
making progress in the AllocNode operation. The FreeNode operation does not require
any help from other threads, but also participates in the helping scheme to guarantee
progress of concurrent AllocNode operations.

Each thread has a shared variable in which it announces the need for a free node.
A global variable helpCurrent is used to track the current thread that requires help in
allocating a node. This variable is updated in a round-robin manner once it is guaranteed
that this thread has gotten help. This ensures that eventually every thread will have
gotten help. For the first successful CAS attempt to remove a node from the free-list, each
AllocNode operation has to possibly help the thread currently identified by helpCurrent.
The FreeNode operation first tries to provide the to-be-freed node to the thread that
currently needs help, and only if this fails the node is added to a free-list. This not only
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helps threads trying to allocate new nodes, but also reduces the chance of conflicting
CAS attempts on the free-list.

In order to avoid conflicts with concurrent FreeNode operations, each thread operates
on two separate free-lists. Moreover, in order to avoid conflicts with concurrent AllocNode
operations, all concurrent AllocNode operations operate on the same free-list, thus always
leaving one of the two free-lists free of conflicts for the corresponding FreeNode operation.
The free-list that is used for AllocNode operations is also updated in a round-robin
manner once it is empty.

The performance analysis presented in [Sun05] shows that the wait-free implementa-
tion performs slightly worse than the lock-free version. However, the main strength of
wait-free algorithms is not in high average performance, but rather in reliable execution
guarantees that could be exploited for example in real-time systems. Unfortunately, the
paper does not go into any details about the quality of the bounds of this scheme.

One drawback of this scheme is that the number of threads is fixed and has to be
known in advance. This can be a real limitation for applications that are designed to run
on a variety of different systems. However, the property of reliable execution guarantees
is mainly interesting for real-time systems, which usually have a fixed number of threads
that is known in advance anyway.

2.3 Generic Lock-Free Reference Counting

The solution proposed by Detlefs et al. [DMMJ01] is another variation of reference
counting that enhances on the original scheme by Valois [Val95] in that it allows arbitrary
reuse of reclaimed nodes. To achieve this they assume the availability of a double
compare-and-swap (DCAS) instruction that can atomically access two independent
memory locations.

LFRC does not permit arbitrary reuse of reclaimed nodes because there is a race
condition between reading the pointer to the node and incrementing the nodes’s reference
counter; it could happen that the node gets reclaimed before the thread can increment
the counter. This is solved by expecting that reference counters are available infinitely
and allowing access and modification of reference counters even for reclaimed nodes.

The proposed solution by Detlefs et al. overcomes this limitation by using the DCAS
instruction to increment the reference count while atomically ensuring that the pointer
to the node still exists. This allows the node to be arbitrary reused since the DCAS
operation will fail and not update the reference counter in case the pointer has been
changed due to reclamation of the node. However, during execution of a DCAS operation
the CPU will probably still access the memory location where the reference counter used
to be. So it has to be ensured that a read access to that location is still a valid operation.

The main drawback of this scheme is that to my knowledge none of the current
processor architectures provide a DCAS instruction. There are, however, a few proposals
on how such an operation can be emulated on systems that only support simple CAS
operations like, e.g., [HFP02]. While this scheme could be implemented with such an
emulation, the performance would most likely suffer.
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2.4 Hazard Pointers

Hazard Pointer based reclamation (HPBR) was introduced by M. Michael in [Mic04a] in
2004. In some publications this scheme is also referred to as safe memory reclamation
(SMR) [Fra04, Mic02, ST05].

It is primarily based on the observation that, in most algorithms for lock-free dynamic
objects, a thread holds only a small number of references that may later be used without
further validation. For example queues and linked lists need K = 2 references, while
stacks require only K = 1. However, to the best of my knowledge there are no algorithms
for general tree or graph traversal that can provide an upper bound on K.

The core idea is associating a number of single-writer multi-reader shared pointers,
called hazard pointers, with each thread that may operate on the associated objects.
Each thread has K hazard pointers (the number of required hazard pointers depends on
the actual algorithm and data structure), hence, if there are p threads, we have H = pK
hazard pointers in total.

When a thread wants to access a shared object, it stores the object’s reference in one
of its unused hazard pointers. This is the way to signal to the other threads that this
thread is using this particular object and it is therefore currently not safe to reclaim it.
When the thread no longer needs the object it simply resets the according hazard pointer
to null.

Nodes that have been removed from the data structure and need to be reclaimed
(in [Mic04a] they are referred to as retired nodes) are maintained in a thread local list.
Whenever the size of a thread’s list reaches a threshold R (which can be chosen arbitrarily)
the thread tries to reclaim the nodes from the list. Increasing R amortizes reclamation
overhead across more elements, but increases memory usage; if R is larger than H by
some amount proportional to H, written formally as R = H + Ω(H), the amortized
per-element processing time is constant. But when the threshold for the number of
retired nodes is H, there are potentially pH = p2K unreclaimed nodes, i.e., the number
of unreclaimed nodes is quadratic in the number of threads. This can become a huge
problem for large numbers of threads as will be shown in Section 5.7.

In order to determine whether it is safe to reclaim a certain node a thread has to scan
the hazard pointers of all the other threads to check if one of them is currently using it.

Since each thread has K hazard pointers and can hold R removed elements in its
private list, a crashed thread can prevent only K + R removed elements from being
reclaimed. This reclamation scheme thus bounds the amount of memory which can be
occupied by removed elements, even in the presence of thread failures.

In real life scenarios there are often situations where it is not possible to provide a
fixed upper bound on the number of hazard pointers. For these cases HPBR can be
extended to support an arbitrary number of hazard pointers per thread. Unfortunately,
this change also destroys the two important properties that set HPBR apart from other
reclamation schemes: constant processing time per element as well as the upper bound
on unreclaimable nodes.

Hazard pointers are patented at the US Patent & Trademark Office under the
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publication number US20040107227 (A1) [Mic04b]; the patent is held by International
Business Machines (IBM). So before using this scheme in a project one has to consider
the legal implications of using a patented technology.

Nonetheless, Michael and Wong submitted a proposal to add a hazard pointers
implementation to the C++ standard library [MW16].

Aghazadeh et al. [AGW14] introduced an improved version of HPBR by reducing the
number of comparisons per scan to one, at the cost of increasing the amount of time
between node removal and node reclamation.

2.5 Pass The Buck

In [HLM02] Herlihy et al. presented a formalized problem description called the Repeat
Offender Problem (ROP). It is defined with respect to a set of values, a set of clients, and
a set of guards. Each value can be free, injail, or escaping where initially, all values are
free. An application dependent Arrest action can cause a free value to become injail
at any time. A client can help injail values to start escaping so they can eventually
become free again.

Clients can only use values that are not free. In order to prevent a value v from
escaping while it is being used by a client, a guard can be posted on v. However, the
guard may fail to prevent v from escaping if it is posted too late. Thus, to safely use v, a
client must ensure that v is injail at some time after it posted a guard on v. Clients
can hire and fire guards dynamically, according to their need.

ROP solutions can be used by threads (clients) to avoid dereferencing (using) a
pointer (value) to an object that has been freed. In this context, an injail pointer is
one that has been allocated (arrested) since it was last freed and can therefore be used.
Therefore, any solution to the ROP also solves the memory reclamation problem for
dynamic lock-free data structures.

Together with the formal problem definition Herlihy et al. also presented a solution
to the ROP called “Pass The Buck” (PTB). PTB is quite similar to HPBR—the guards
concept is essentially the same as the previously described hazard pointers. The main
difference between these two is the way it is determined which retired nodes can safely
be reclaimed. PTB lacks the amortized bound on the memory reclamation overhead
per physically deleted node, but uses the concept of hand offs to provide value progress,
which guarantees that logically deleted nodes will eventually be freed—even in the face
of thread failures. On the downside, PTB requires the more expensive compare-and-swap
operation while HPBR requires only atomic reads and writes. Also, the algorithm of
PTB as it is described in the paper is likely to suffer from false sharing since all the
threads operate on different elements from some globally shared arrays. However, this
can certainly be improved in a real-world implementation.
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2.6 Beware & Cleanup

Beware & Cleanup is a reclamation method presented by Gidenstam et al. in [GPST09].
It is based on a combination of hazard pointers and reference counting and tries to keep
the respective strengths while avoiding the drawbacks.

The basic idea is to use hazard pointers to protect thread-local references and reference
counters to protect internal links in the data structure. Thus, the reference counter of
each node indicates the number of globally accessible links that reference that node.

This scheme provides an upper bound on the number of nodes that are withheld from
reclamation by bounding the size of the threads’ deletion lists. To achieve this, Beware &
Cleanup relies on a cleanup procedure that can update links in deleted nodes, provided
that the following property is satisfied: Each link in a deleted node that references
another deleted node can be replaced with a reference to an active node, with retained
semantics for all of the involved threads.

Nodes in the deletion lists might not be available for reclamation due to being
referenced by a hazard pointer, or by being referenced from other deleted nodes (i.e., by
having a non-zero reference counter). Since those other deleted nodes can be in the same
deletion list, as well as in the deletion list of some other thread, the deletion lists of all
threads are accessible by any thread.

When the number of nodes in a thread’s deletion list reaches a certain threshold, it
performs a cleanup of all nodes in its own deletion list. If none of these nodes becomes
reclaimable after the cleanup, this must be due to references from nodes in the deletion
lists of other threads. Then the thread tries to perform a cleanup on the deletion lists of
all other threads as well. This procedure is repeated until the length of the deletion list
is below the threshold, effectively bounding the total number of nodes that are not yet
reclaimed.

Unfortunately, the cleanup function is specific to each data-structure, so this scheme
is not as generic as the other schemes described so far.

2.7 Quiescent state based reclamation

Quiescent state based reclamation (QSBR) is typically used to implement read-copy-
update (RCU) schemes [MS98, DMS+12]. It is based on the concept of a grace period.
A grace period is a time interval [a, b] such that, after time b, all nodes removed before
time a can safely be reclaimed. QSBR uses quiescent states to detect grace periods. A
quiescent state for some thread T is a state in which T holds no references to shared
nodes. In particular, T holds no references to any shared nodes which have been removed
from a lock-free data structure.

A grace period is therefore any time interval in which every thread of the system has
passed through at least one quiescent state. Figure 2.1 illustrates this relationship.

Thread T1 goes through quiescent states at times t1 and t5, thread T2 at times t2
and t4, and thread T 3 at time t3. Hence, any time interval that contains either [t1, t3] or
[t3, t5] is a valid grace period.
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Figure 2.1: Black boxes represent quiescent states. Any time interval that contains [t1, t3]
or [t3, t5] is thus a grace period.

A typical way to implement QSBR is by using a fuzzy barrier [Gup89]. In contrast to
a non-fuzzy barrier, which blocks the thread upon entry until all other threads have also
reached the barrier, a fuzzy barrier simply skips the protected code block and continues
execution if some other thread has not yet entered the barrier. The thread will attempt
to enter the fuzzy barrier again during subsequent executions.

For implementing QSBR the fuzzy-barrier is used to protect the code that performs
the reclamation. The threads try to enter the barrier and reclaim retired nodes when
they pass through a quiescent state.

In order to determine whether all threads have reached the barrier (i.e., whether they
went through at least on quiescent state) all threads have to be checked. This incurs a
performance overhead linear in the number of threads.

2.8 Epoch based reclamation

Epoch based reclamation (EBR), presented by Fraser in 2004 [Fra04], is also based on
the concept of grace periods. Nodes that have been removed from data structures are
kept in limbo lists that hold the references to the nodes until it is safe to reclaim them
(i.e., until no stale references can possibly exist).

In EBR the programmer has to define a critical region4 in which a thread is allowed
to access shared objects. These regions have to be entered and left explicitly. A global
epoch count is used to determine when no stale references exist to any object in a limbo
list.

Every thread has a flag that indicates whether this thread is currently in a critical
region as well as a local epoch count that identifies the epoch it currently executes in (in
case it currently is inside a critical region). The thread’s local epoch count may lag at
most one epoch behind the global epoch. Each time a thread enters a critical region it

4This critical region has nothing to do with the term critical section that is often used in the context
of mutual exclusion.
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sets the flag and observes the current epoch, i.e., it updates its local epoch to match the
global epoch. A thread that removes a node from a data structure places this node on
the current limbo list (i.e., the limbo list that is associated with the current epoch).

After some predetermined number of critical region entries, a thread will attempt
to update the global epoch. This succeeds only if all threads in a critical region have
already observed the current epoch—this can again be achieved by using a fuzzy barrier.
In that case the limbo list that was populated two epochs ago can safely be reclaimed
and the list itself can immediately be recycled and reused for the next epoch. Thus only
three epochs (and limbo lists) are required in total.

In order to determine whether all threads have observed the new global epoch all
thread local epochs have to be checked. This produces a performance overhead linear in
the number of threads.

2.9 New epoch based reclamation

New epoch based reclamation (NEBR) is an extension to EBR that was proposed by Hart
et al. in [HMBW07]. The original description of EBR defines a critical region around
every operation. However, entering a critical region requires a sequentially consistent
operation and such operations can be quite expensive. This is necessary to guarantee
that another thread that tries to update the global epoch actually sees the new value and
therefore recognizes that this thread is inside a critical region. Without this guarantee, a
race condition can occur, where the global epoch gets updated which in turn allows a
node to be freed even though the node is still in use by some thread, just because the
update of this thread’s critical region flag was not noticed by the thread that updated
the global epoch. In EBR every single operation on some lock-free data structure is
encapsulated in its own critical region, thus every operation requires such a fence.

During their performance analysis Hart et al. identified this overhead for every single
operation to be very significant. Therefore, the proposed solution in NEBR is that a
critical region can be expanded over several operations. For example, when a group of
operations on some data structure has to be performed together, the critical region is
entered before the first operation and left after the last one, effectively expanding the
region over all operations and thus distributing the overhead for the region entry over
the whole group of operations.

2.10 Drop the Anchor

Drop the anchor (DTA), presented by Braginsky et al. in [BKP13], is a reclamation
scheme that combines ideas from hazard pointers and epoch based reclamation. The
resulting scheme should reduce overhead in comparison to HPBR while keeping the
advantages of bounded memory and failure tolerance.

They presented a specialized technique that is tailored to singly-linked lists. The
basic idea is that instead of acquiring a hazard pointer each time a pointer to a node
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is read, a hazard pointer is acquired only once for every c pointers read where c can be
chosen arbitrarily—higher values improve performance while lower values improve the
bounds on the number of unreclaimable nodes. If a thread T1 suspects that another
thread T2 has crashed, a complex technique called freezing [BP11] is used, in which T1
co-operates with other running threads to replace the part of the data structure that T2
might potentially access, in order to restore their ability to free memory. Basically all the
nodes of the list that T2 might access will be cut out and replaced with new copies. The
cut-out nodes are marked so that T2 can tell what happened in case it has not crashed
but wakes up eventually. This allows memory reclamation to continue even in the face of
thread failures and provides an upper bound on the number of nodes that a failed thread
can prevent from being reclaimed.

DTA has been analyzed in [BKP13] and [AEH+14] and has been shown to be very
efficient; the key to performance being that the expensive anchor and freezing operations
are used rarely, and do not affect the “fast path”. However, DTA does not qualify as a
generic reclamation scheme as it requires the programmer to implement the complex and
data structure specific wait-free freezing concept.

The original paper only describes the implementation for a linked list, but the authors
believe that their technique can be applied for other non-blocking data structures as well.

2.11 StackTrack

This scheme, presented by Alistarh et al. in [AEH+14], makes use of modern hardware
transactional memory (HTM) functionality that was introduced with the Intel Haswell
architecture [R.12].

The basic idea is that each operation of the lock-free data structure is broken down
into a series of transactions in a way such that a successfully committed transaction cannot
interfere with any memory reclamation. The scheme relies on the HTM implementation
to automatically monitor all pointers stored in the private memory and therefore it does
not require the explicit announcement of pointers before they are accessed. The HTM
system will automatically abort any transaction that tries to accesses a node which is
freed during the transaction. Since lock-free algorithms do not depend on transactions for
correctness, each operation can be split into a number of smaller transactions to reduce
the probability of transaction aborts.

Currently available implementations of HTM do not offer progress guarantees, i.e.,
there is no guarantee that a transaction can be ever successfully committed. So to
make the algorithm lock-free a fallback path has to be provided that does not use HTM;
StackTrack falls back to hazard pointers.

This scheme requires the programmer to insert code before and after each operation.
In addition, breaking down the operation into smaller transactions requires to insert code
after every few lines of the operation implementation. However, the proposal also states
that it should be possible to write a compiler to automate much of this.
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2.12 ThreadScan

This is another scheme proposed by Alistarh et al. [ALMS15]. It is designed as a memory
reclamation library where the programmer provides a data structure implementation
with correct free calls and ThreadScan will implement it automatically ensuring efficient
memory reclamation.

At a high level it works as follows: deleted nodes are collected in a shared delete buffer
with a fixed size. When the buffer becomes full, the thread which inserted the last node
becomes the reclaimer and initiates a Collect operation. For that the reclaimer signals to
all other threads that they need to help examine references to nodes in the delete buffer,
i.e., each thread has to scan its own stack and registers for such references. If a node
is still referenced by some thread it gets marked. By having all threads help marking
referenced nodes, the cost of the memory scan is divided among all threads as each
thread is scanning only its own stack and registers. The scan is performed word-by-word,
checking each chunk against pointers in the delete buffer. In order to guarantee that this
scan works correctly, the programmer must not actively “hide” pointers to live nodes. At
the end each thread replies with an acknowledgment and resumes its normal execution.
Once the reclaimer has received all acknowledgments it can safely reclaim all unmarked
nodes and return.

The scheme offers strong progress guarantees. This is achieved by relying on the
signaling system available on POSIX systems. The helping procedure that gets executed
by each thread as part of the Collect operation is part of their signal handler. Since the
operating system signal handler code always has precedence over the application, this
shields the scheme from possible errors in the data structure like, e.g., infinite loops. As
a result, strong progress is guaranteed as long as the operating system does not starve
threads, which is highly unlikely on todays modern operating systems. In addition, all
other data structures preserve their progress guarantees as well since ThreadScan only
adds a bounded number of steps to their execution.

2.13 Optimistic Access

This scheme by Cohen and Petrank [CP15b] is designed to provide fast read operations,
as reads are the most common. In particular, the goal is to allow reads to be executed
without writing to shared memory. This is achieved by allowing a thread to sometimes
read a node even after it was reclaimed. The scheme maintains correctness in spite of
reading reclaimed nodes by using the following three key properties:

1. A read must not fail, even when accessing reclaimed memory.

2. A read that accesses reclaimed memory will be identified immediately after the
read.

3. When a read of such a stale value is detected, the scheme allows a rollback of the
optimistic read.
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The first requirement can be easily satisfied by using user-level allocators that allocate
and de-allocate memory without returning pages to the system.

For the second requirement Optimistic Access divides the memory reclamation into
phases and poses the following restrictions. First, an object is never reclaimed at the
same phase in which it is unlinked from the data structure; it can only be reclaimed
at the next phase or later. Second, a thread that acknowledges a new phase will not
access objects that were unlinked in previous phases. Therefore, if a thread is not aware
that a phase has changed, its read operation may potentially access a reclaimed object.
Otherwise, i.e., if the thread is aware of the current reclamation phase, its read operation
is safe.

In order to effectively manage phase changes, each thread is equipped with a warning-
flag. This flag is set if a new phase had started without the thread noticing, and clear
otherwise. During a phase change the warning-flags of all threads are set. When a thread
acknowledges a phase change it resets its flag. This way, checking whether a read might
have accessed an already reclaimed object is as simple as checking whether the flag is
non-zero.

The third requirement presupposes that the lock-free data structure supports to roll
back an operation. This is possible in most lock-free data structures that handle races
by simply restarting the operation from scratch. However, to formally define a roll-back
mechanism that covers a wide range of data structures, Optimistic Access adopts the
normalized form for lock-free data structures described in [TP14].

A read operation with Optimistic Access is therefore executed as follows: first the
shared memory is read, then the thread’s warning-flag is checked and if set, a restart
mechanism is used to roll back the execution to a safe point.

In order to prevent write operations from accessing reclaimed memory, the scheme
adopts a simplified version of hazard pointers. Before a thread performs a write operation
it has to declare the location in a hazard pointer, thus preventing the object from being
reclaimed.

A thread that increments the phase number could now reclaim all objects that were
unlinked in previous phases and that are not referenced by a hazard pointer. To reduce
the overhead caused by too frequent phase changes and the associated restarts, retired
objects are gathered in a global buffer and a single reclaiming thread processes all objects
unlinked by all threads.

However, it is not possible to implement this scheme in C++ in a way that complies
with the C++ standard as the potential read of already reclaimed memory poses a classic
data race (see Section 3.3).

2.14 Automatic Optimistic Access

This scheme from Cohen and Petrank [CP15a] is inspired by mark-sweep garbage collectors
and builds on the previously described Optimistic Access. Just as Optimistic Access, it
relies on the normalized form of a data-structure. Unlike all other garbage collectors
presented in the literature it strictly satisfies the lock-free property. However, instead of
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over the entire heap it is applied on a single data-structure with a structured algorithm.
Since this scheme works like a garbage collector, the developer does not have to manually
insert retire statements, instead the algorithm automatically determines the set of
unreachable data-structure nodes and reclaims them for future use.

Since this algorithm is supposed to be lock-free, it cannot rely on handshakes and
therefore has to deal with three major difficulties. First, it has to get all threads’ roots
in a lock-free manner, including those of threads that might not respond. Second, it has
to maintain correctness in cases where threads may be executing under the assumption
that a previous collection is still active. Finally, it has to ensure proper completion of a
collection phase even if a thread fails in the middle of the scan operation.

In order to be able to read the roots of unresponsive threads, each thread records its
roots at known intervals, therefore making them available to other threads. Similar to
Optimistic Access a thread that detects the read of a stale value has to restart execution
from a location where its roots are known.

Threads that are executing code in an outdated reclamation phase could corrupt the
reclamation execution of the current phase. In order to avoid this, all of the scheme’s
shared data is protected using a versioning scheme. Variables that could be corrupted
are modified via a CAS operation that fails if the current phase number does not match
the local phase. Before a new phase is started, all such phase-protected variables are
updated to a new phase. Thus, any update attempt by a late thread will fail.

It has to be guaranteed that all nodes are properly scanned and marked, even if a
thread stops responding while performing its part of the scan operation. To this end each
thread has a mark-stack containing all the nodes that are not yet processed by this thread.
These mark-stacks are readable by other threads and the mark procedure is implemented
in a way that satisfies the invariant that children of a marked node are either marked or
are visible to other threads. Thus, even if a thread becomes unresponsive, other threads
can continue to work on nodes that reside on its stack and no node is lost.

2.15 DEBRA / DEBRA+

Brown [Bro15] proposed DEBRA (Distributed Epoch Based Reclamation) which is an
adaptation of the EBR scheme (see Section 2.8). The main difference is that all its
operations perform in only O(1) steps.

Just as in EBR, each thread has three limbo lists, a flag that signals whether it is
currently inside a critical region or not and a value that represents the latest epoch that
this thread has observed. However, in contrast to EBR the thread that enters a critical
region incrementally scans the flags of all the other threads, amortizing the cost over n
enter operations. A local variable keeps track of the number of threads that have already
been verified not to be in a critical region or that have already observed the current
epoch. Once all threads have been checked (i.e., the variable is equal to n), the thread
can perform a CAS to increment the current epoch.

Brown also proposed yet another extension; the resulting schema is called DEBRA+
which also brings fault tolerance to the table. To achieve this it uses signals, an interprocess
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communication mechanism supported by POSIX-compliant operating systems, and non-
local gotos, which allow threads to begin executing from a different instruction, outside
of the current function.

When a thread is preventing the update to the next epoch for too long (e.g., because
it has crashed, entered an infinite loop, etc.), the slow thread is neutralized using an OS
signal. Upon resuming execution, the neutralized thread runs special recovery code to
clean up any inconsistencies it might have left before it was neutralized.

This allows DEBRA+ to limit the number of non-reclaimable objects to O(mn2),
where n is the number of threads and m is the largest number of objects removed from
the data structure by a single operation.

2.16 QSense

Balmau et al. proposed QSense [BGHZ16], a hybrid approach that combines QSBR and
hazard pointers. The idea is to use QSBR for the fast path, as it has little overhead, and
to fall back to a variant of hazard pointers in case of prolonged delays due to one or more
threads not passing through a quiescent period. A prolonged delay is a delay that is
long enough such that a number of nodes larger than a given configurable threshold has
been removed but cannot safely be reclaimed. If prolonged delays are detected, QSense
automatically falls back to a robust reclamation scheme, i.e., a scheme that provides
an upper bound on the number of steps for all actions related to memory reclamation,
regardless of the progress of other threads.

The proposed fall-back path is called Cadence and is based on an amortized hazard
pointer’s variant. It achieves significantly better performance by avoiding the necessity
for memory barriers during data structure traversal. To this end, QSense introduces
background threads (called rooster processes) that periodically wake up and generate
context switches, which act as memory barriers. This ensures that any hazard pointer
becomes visible to other threads within a bounded time T—the time between two
context switches. By deferring reclamation such that a thread may only reclaim a retired
node n after it has been awaiting reclamation for longer than T , it is guaranteed that
any hazard pointer potentially protecting n must be visible and thus n can safely be
reclaimed—provided that none of the visible hazard pointers is protecting n.

Even though Cadence was proposed and used only in the context of QSense, it would
also be possible to use it as a stand-alone memory reclamation scheme.

2.17 Stamp-it
I came up with the first version of this scheme several years ago before I knew about
QSBR, EBR, or the timestamp based scheme described by Harris in [Har01]. However,
the resulting scheme has several similarities.

As in EBR, the programmer has to define a critical region that is entered and
left explicitly. A thread is only allowed to access shared objects inside such regions.
Reclamation of nodes is deferred to a time when it is guaranteed that no thread can

19



Threads

time

Global stamp
(initial=0)

Thread stamps

T1

T2

T3

t1

update

1
stamp1=0
stamp2=-
stamp3=-

t2

update

2
stamp1=0
stamp2=1
stamp3=-

remove n1

t3

read

2

t4

update

3
stamp1=0
stamp2=1
stamp3=2

remove n2

t5

read

3

t6

stamp1=0
stamp2=-
stamp3=2

t7

stamp1=-
stamp2=-
stamp3=2

t8

stamp1=-
stamp2=-
stamp3=-

Figure 2.2: Example visualizing the idea of Stamp-it. The thick lines mark critical
regions.

possibly hold a reference to the node, i.e., when all the threads that happened to be
inside a critical region at the time the node was retired have left the critical region.

When a thread enters a critical region it increments a global stamp using an atomic
fetch-and-add and stores the returned stamp in a thread-local data structure visible to
the other threads. By setting the stamp in the data structure, the thread also signals to
other threads that it is now inside a critical region. When a thread retires a node for
reclamation it simply takes the current value of the global stamp, stores it in a special
field of the node and appends the node to the end of a thread-local retire list. The node
can be reclaimed as soon as all the threads that were inside a critical region at the time
the node was added to the retire list have left their respective critical region.

When a thread leaves the critical region, it resets its stamp and tries to reclaim
retired nodes from the local retire list in case it contains any. For that, it must determine
the lowest stamp value of threads that are inside a critical region, i.e., the stamp value
of the thread that has entered a critical region at the earliest. Any node in the retire list
that has a stamp value that is less or equal to the gathered stamp can then safely be
reclaimed. Since retired nodes are appended to the end of the retire list they are strictly
ordered by their stamp value. Reclamation starts with the node with the lowest stamp
and can stop as soon as the first node with a stamp higher than the current lowest stamp
is found. No time is wasted on nodes that cannot yet be reclaimed. Figure 2.2 illustrates
this.

The initial value of the global stamp is zero. When thread T1 enters its critical region
at time t1 it increments the global stamp and stores the old value in its local stamp.
The same happens when T2 enters its critical region at t2 and T3 at t4. At t3, thread T1
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removes the node n1 from some data structure and marks it for reclamation. To that end,
it reads the current value of the global stamp, which is two since time instant t2, stores this
value in the node and adds it to the local retire list. The node can be reclaimed once all
threads that were in a critical region at the time the node was marked (t3) have left their
respective critical region. This can be determined by checking if any thread in a critical
region has a local stamp value that is less than the node’s stamp. Or more formally, a
node with stamp s can be reclaimed if ∀x(Tx is not in critical region ∨ stampx > s). For
node n1 this would be t7 and for node n2 it would be t8. Optionally each thread could
exclude itself from this check (if it is guaranteed that it does not hold any references to
the nodes in question), in which case the node n1 could already be reclaimed at t6.

A straight forward implementation of this scheme is quite simple, but will have
runtime complexity linear in the number of threads since all threads have to be scanned
in order to determine the lowest stamp. To improve this, the algorithm was redefined
based on a data structure that efficiently supports the following operations:

1. Add an element and assign a stamp to it (push). Stamps have to be strictly
increasing, but not necessarily consecutive.

2. Remove a specific element, return true if this element was the one with the lowest
stamp (remove).

3. Get the highest stamp ever assigned to an element.

4. Get the lowest stamp of all elements.

In addition, a global retire-list is introduced. It is used to collect nodes that could not be
reclaimed when their owning thread left its critical region. The responsibility to reclaim
these nodes is deferred to the “last” thread as explained below.

The algorithm uses this data structure as follows. Upon entering a critical region
the thread adds itself to the data structure, and gets a new stamp value. Stamp values
are strictly increasing, therefore, defining a total order in which all threads have entered
their respective critical region.

When a thread retires a node it requests the highest stamp from the data structure,
increments that value, stores it in the node and appends the node to the end of its
local retire-list. If this pushes the number of entries in the local retire-list over a certain
threshold it immediately performs a reclaim operation. The increment is used to create a
stamp that is larger than the stamps of all threads that were in a critical region at the
time the node was retired. This is essentially equivalent to using the global stamp as
previously described.

The reclaim operation requests the lowest stamp from the data structure and reclaims
all entries from the local retire-list with a stamp value less or equal to the requested one.
Since new nodes are appended to the end, the elements in the local retire-list are ordered
by their stamp values. This makes the reclaim operation very efficient as it always has a
runtime linear in the number of nodes that can currently be reclaimed; no time is wasted
on nodes that cannot yet be reclaimed.
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Upon leaving a critical region the thread removes itself from the data structure and
performs a reclaim operation on the local retire-list. If the remove operation returns
false and the number of nodes in the local retire-list exceeds some threshold the thread
pushes all remaining entries to the global retire-list as an ordered sublist (internally
called chunk). If the remove operation returns true, i.e., the thread had the smallest
stamp and was therefore “lagging behind” the most and blocking reclamation, it will
perform a reclaim operation on the global retire-list. In contrast to the local retire-list the
global retire-list is not totally ordered and therefore does not provide the same runtime
guarantees. However, since it is organized as a list of sorted sublists, each sublist needs
to be scanned only up to the node which has a stamp that is larger than or equal to the
lowest stamp returned. Therefore, if we maintain additional links from sublist to sublist,
the resulting total runtime is O(n + m) where n is the total number of reclaimable nodes
and m is the number of ordered sublists in the global retire-list.

I decided to implement the data structure as a lock-free doubly-linked list based on
the proposal by Sundell and Tsigas [ST05]. This data structure maintains sentinel head
and tail nodes which are used to store the highest and lowest stamp values, respectively.
The push operation first increments the head’s stamp using an atomic fetch-and-add,
stores the returned value in the node it is currently inserting and then tries to insert
the node into the linked list, right after the head, using an atomic compare-and-swap
operation. The remove operation unlinks the node from both directions, and returns
true if the node was last, i.e., the tail’s predecessor.

Every thread holds a thread-local control block that is used as a node in this list.
A thread that enters a critical region simply calls push with its node. Thus, the linked
list in direction from tail (smallest stamp) to head (largest stamp) defines the order in
which the threads have entered their respective critical regions. When a thread leaves its
critical region it calls remove. If the return value is true, it first updates tail’s stamp
to match the value of the new predecessor, and then it performs a reclaim operation
on its local retire-list as well as the global retire-list. Otherwise, the thread performs a
reclaim operation on its local retire-list, and if the number of remaining nodes exceeds
some threshold, it moves the remaining local list to the global retire-list.

The algorithm is lock-free. In the absence of contention, entering and leaving critical
regions and takes constant time. The reclamation operation takes time proportional to
the number of reclaimable nodes; the time per node is therefore amortized constant. The
implementation is described in detail in Section 4.4.6. Section 5.2 shows experimental
results that even under load, the number of retry iterations is small (constant).
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CHAPTER 3
Memory Models

This chapter describes the memory models of the two most common micro-architectures,
x86 and ARM, as well as the memory model that was introduced with the C++11
standard.

The memory model is at the heart of the concurrency semantics of any shared-memory
system. It defines the set of values that a read operation in a program is allowed to return,
therefore defining the basic semantics of shared variables. It is impossible to meaningfully
reason about a program or any part of the language implementation (including hardware)
without an unambiguous memory model. Reclamation schemes are no exception to this
rule; since their purpose is to solve the reclamation problem of concurrent data structures,
they are themselves inherently concurrent. The C++11 memory model described in this
chapter will be used extensively in Chapter 4 when the implementations of the various
schemes are discussed.

Recent books by Michael L. Scott [Sco13] and Sorin et al. [SHW11] provide good
introductions to memory models in both hardware and software. Overviews of the
complex issues can be found in numerous papers, for instance those by Adve and
Gharachorloo [AG96], Adve and Boehm [AB10, AB11], and McKenney [McK05] to
mention a few.

The memory model can be refined to differentiate between the programming language
memory model and the hardware memory model.

• Language memory model: Defines the optimizations, instruction re-writes, and
reorderings a compiler is allowed to perform.

• Hardware memory model: Defines the optimizations and instruction reorderings a
specific architecture implementation is allowed to perform.

These optimizations can cause instructions to be executed or perceived in an order that
differs from what is defined in the source code, resulting in the definitions of the following
four orderings:

23



Source code order: Defines the order in which the memory operations are specified in
the source code by the programmer.

Program order: Defines the order in which the memory operations are specified in
the machine code, i.e., the code that is executed by the CPU. Note that this
can differ from the source code order, because depending on the definition of the
language memory model, compilers are allowed to reorder instructions as part of
the optimization process.

Execution order: Defines the order in which the individual memory-reference instruc-
tions are executed on a given CPU. The execution order can differ from the program
order due to optimizations based on the hardware memory model of the specific
CPU-implementation.

Perceived order: Defines the order in which a CPU perceives its and other CPUs’
memory operations. The perceived order can differ from the execution order due
to caching, interconnect and memory-system optimizations. Different CPUs can
perceive the same set of memory operations as occurring in different orders. This
is also defined by the hardware memory model.

The reason why these orders can be different stems from the fact that increases in memory
performance have not kept up with the rate at which CPU instruction performance has
increased. Trying to hide the fact that memory operations are increasingly expensive
compared to simple register-to-register instructions, modern CPUs receive increasingly
large caches in order to reduce the overhead of these memory accesses.

However, CPUs have become so fast that even these caches cannot keep up with them.
Therefore, caches are often partitioned into banks that can operate nearly independently
from each other. This allows each of the banks to run in parallel in order to better keep
up with the CPU. Memory is usually divided evenly among the banks by address, e.g.,
even-numbered cache lines are processed by bank 0 while odd-numbered cache lines are
processed by bank 1. However, this type of hardware parallelism now allows memory
operations to complete out of order.

Suppose two memory write operations where the first one is processed by bank 0 and
the second one is processed by bank 1. Now if bank 0 is already busy processing an earlier
request and bank 1 is idle, the second write would be visible to another CPU before the
first write—the writes would be perceived out of order by other CPUs. However, this
kind of reordering is not limited to write operations; read operations can be reordered in
a similar manner.

3.1 Sequential consistency
Sequential consistency is the most intuitive memory model and also the easiest for
reasoning about the correctness of an algorithm or data structure. That is why most
publications on concurrent algorithms or data structures either explicitly or implicitly
assume a sequentially consistent memory model.
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A natural view of the execution of a multi-threaded program is as follows. For each
step one of the threads is randomly chosen and the next instruction in that thread’s
program gets executed. This process is repeated until the program as a whole terminates.
This is effectively equivalent to taking all the steps of all threads and interleaving them
in some way, resulting in a single total order of all steps. Therefore, whenever an object
is accessed, the last value stored to the object in this order is retrieved. Following
Lamport [Lam79], an execution that can be understood as such an interleaving is referred
to as sequentially consistent.

For an example see Listing 3.1 which shows an implementation of Dekker’s mutual
exclusion algorithm [Dij65]. The steps of the two threads can be interleaved in many
ways, but since the program order is preserved it is ensured that at least one of the load
operations sees the value of the prior store operation, i.e., the program order, execution
order and perceived order are all identical. Therefore is is impossible that both, r1 and
r2, are zero.

Listing 3.1: Dekker’s mutual exclusion algorithm
1 Initially: X = 0, Y = 0
2
3 Thread 1:
4 X = 1
5 r1 = Y
6
7 Thread 2:
8 Y = 1
9 r2 = X

Unfortunately, ensuring sequential consistency is quite expensive and none of todays
processor architectures provide a fully sequentially consistent memory model. While
they allow to enforce sequential consistency at certain points, normal execution is not
sequentially consistent, but highly dependent on the implementation of the specific
architecture.

3.2 Weaker memory models

3.2.1 x86-TSO

Even though the Intel x86 memory model is somewhat weaker than the sequentially
consistent model, it is still one of the strongest models amongst todays modern CPU
implementations. However, as Sewell et al. [SSO+10] point out, for a long time the
information provided by Intel as well as AMD on their respective architecture imple-
mentations were partly purely informal, missing concrete examples and sometimes even
inconsistent with the actual implementation.

Based on these results they formally described a new memory model called “x86-TSO”
(Total Store Order) which is consistent with the concrete examples in Intel’s and AMD’s
latest documentation available at that time. This model is illustrated in Figure 3.1.
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Figure 3.1: x86-TSO block diagram—taken from [SSO+10].

As can be seen in the figure, the hardware threads interact with a storage subsystem,
which is represented by the dotted box. The state of this storage subsystem comprises a
shared memory that maps addresses to values, a global lock to indicate when a particular
hardware thread has exclusive access to memory, and one store buffer per hardware
thread. A formal definition of the behavior of the storage subsystem can be found
in [SSO+10], but the main points are:

• The store buffers are FIFO and a reading thread must read its own most recent
buffered write, if there is one, to that address. Otherwise reads are satisfied from
shared memory.

• An mfence instruction flushes the store buffer of that thread.

• To execute a lock’d instruction1, a thread must first acquire the global lock. At
the end of the instruction, it flushes its store buffer and releases the lock. While
the lock is held by one thread, no other thread can read. This essentially means
that lock’d instructions enforce sequential consistency.

• A buffered write from a thread can propagate to the shared memory at any time
except when some other thread holds the lock.

x86-TSO does not permit local reordering except of reads after writes to different
addresses.

1These are read-modify-write instructions with a lock prefix for atomicity like, e.g., lock xadd
(atomic fetch-and-add) or lock cmpxchg (atomic compare-and-swap). A complete list of instructions
that support the lock prefix can be found in [Int16, 8.1.2.2].
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Since writes are buffered, the new value is not visible to other threads until it has
propagated to the shared memory. Therefore, Dekker’s algorithm from Listing 3.1 no
longer guarantees mutual exclusion under the x86-TSO model, as it is perfectly possible
that r1 as well as r2 are both zero. This could be resolved by either introducing an
mfence instruction after a first store operation, or by performing the store operation
using a lock xchg instruction.

Another memory model that is very similar to x86-TSO is the SPARC v8 TSO
model [SPA92].

3.2.2 ARM and POWER

ARM as well as POWER architectures have considerably more relaxed memory models,
allowing a wider range of hardware optimizations. Maranget et al. [MSS12] provide a very
detailed and extensive description of both architectures and their observable behaviors.

While this relaxation can improve performance, power efficiency and hardware com-
plexity, it makes the life of a programmer, who is implementing concurrent data structures,
significantly harder. In contrast to TSO models the following behaviors are possible on
these architectures:

1. Hardware threads can perform reads and writes out-of-order, or even speculatively,
i.e., before preceding conditional branches have been resolved. Any local reordering
is allowed unless specified otherwise.

2. The memory system does not guarantee that a write becomes visible to all other
hardware threads at the same time.

Since a certain ordering of instructions is crucial already for the simplest non-blocking
data structures, these architectures provide various memory barriers and dependency
guarantees that the programmer has to use correctly in order to enforce the desired
ordering.

To understand the behavior of such a machine it is sometimes helpful to think of each
hardware thread as effectively having its own copy of memory, which is illustrated in
Figure 3.2. The collection of all the memories and their interconnection (i.e., everything
except the threads) is usually referred to as the storage subsystem. A write by one
thread may propagate to other threads in any order, and the propagations of writes to
different addresses can be interleaved arbitrarily, unless they are constrained by barriers
or coherence. One can also think of barriers as propagating from the hardware thread
that executed them to each of the other threads. The ARM dbm and POWER sync barrier
instructions can be used to enforce the following orderings between two instructions:

Read/Read: The barrier ensures that they are satisfied and committed in program
order.

Read/Write: The barrier ensures that the read is satisfied and committed before the
write can be committed (and thus propagated and become visible to others).
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We speak of the collection of all the memories and their interconnect (i.e., everything except the threads) as the storage

subsystem.

For the thread-local out-of-order (and speculative) execution, in general we can think of each thread, at any point in

time, as having a tree of the committed and in-flight instruction instances. Newly fetched instructions become in-flight,

and later, subject to appropriate preconditions, can be committed. For example, below we show a set of instruction

instances {i1, . . . , i13} with the program-order-successor relation among them. Three of those ({i1, i3, i4}, boxed)

have been committed; the remainder are in-flight.

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Instruction instances i5 and i9 are branches for which the thread has fetched multiple possible successors; here just two,

but a branch with a computed address might in principle fetch many possible successors. A typical implementation

might well explore at most one speculative path at a time. Note that the committed instances are not necessarily

contiguous: here i3 and i4 have been committed even though i2 has not, which can only happen if they are sufficiently

independent. When a branch is committed then any un-taken alternative paths are discarded, and instructions that

follow (in program order) an uncommitted branch cannot be committed until that branch is, so the tree must be linear

before any committed (boxed) instructions.

For a read instruction, as soon as an address for the read is known, the read might be satisfied, binding its value

to one received from the local memory (or in some cases forwarded from earlier in the thread). That value could

immediately be used by later instructions in the thread that depend on it, but it and they are subject to being restarted

or (if this is a speculative path) aborted until the read is committed.

For a write instruction, the key points are when the address and value become determined. After that (subject to

other conditions) the write can be committed, sent to the local memory; this is not subject to restart or abort. After

that, the write might propagate to other threads, becoming readable by them.

7

Figure 3.2: Storage subsystem—taken from [MSS12].

Write/Write: The barrier ensures that the first write is committed and has propagated
to all other threads before the second write is committed.

Write/Read: The barrier ensures that the write is committed and has propagated to
all other threads before the read is satisfied.

The POWER architecture provides with the lwsync instruction an additional “lightweight
sync”, which is weaker and potentially faster than sync. It mainly differs in the way a
write before the barrier is handled relative to the second instruction:

Write/Write: The barrier ensures that for any particular thread, the first write propa-
gates to that thread before the second.

Write/Read: The barrier ensures that the write is committed before the read is satisfied,
but the read can be satisfied before the write is propagated to any other thread.

In addition to barriers, these architectures provide the following dependencies to enforce
orderings:

Address Dependency: There is an address dependency from a read to a program-
order-later read or write when the value read by the first instruction is used to
compute the address of the second instruction.

Control Dependency: There is a control dependency from a read to a program-order-
later read/write where the value read by the first instruction is used to compute
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the condition of a conditional branch that is program-order-before the second
instruction.

Data Dependency: There is a data dependency from a read to a program-order-later
write where the value read by the first instruction is used to compute the value
that is written by the second instruction.

3.3 The C++11 memory model

On August 12th 2011 the new C++ standard, now commonly referred to as C++11, was
approved and ratified by ISO, replacing the previous version C++03. Since this official
ISO C++ standard is not freely available I will instead refer to the “Working Draft,
Standard for Programming Language C++” from January 2012 [C++12], which only
differs from the the C++11 standard in some minor editorial changes.

This new C++ standard is the first version to define the notion of multi-threaded
executions. The C++ standard prior to C++11 specified program execution in terms of
observable behavior, which in turn described sequential execution on an implicitly single-
threaded abstract machine. Therefore multi-threaded C++ programs relied on libraries
for threading support like POSIX threads, Win32, or Boost. Unfortunately a pure library
approach, in which the compiler is designed independently of threading issues, includes
all sorts of problems [Boe05]. Without a clearly defined memory model as a common
ground between the compiler, the hardware, the threading library, and the programmer,
multi-threaded C++ code is fundamentally at odds with compiler and processor-level
optimizations [MA04]. That is why with the introduction of multi-threaded executions
also a new memory model had to be defined.

The memory model defines when multiple threads may access the same memory
location, and specifies when updates by one thread become visible to other threads. It is
largely based on the work by Boehm, Alexandrescu et al. [BA08, ABH+04].

One of the most important aspects is the definition of a data race [C++12, 1.10.21,
p. 14]:

The execution of a program contains a data race if it contains two conflicting
actions in different threads, at least one of which is not atomic, and neither
happens-before the other. Any such data race results in undefined behavior.

Conflicting actions are defined as follows [C++12, 1.10.4, p. 11]:

Two expression evaluations conflict if one of them modifies a memory location
and the other one accesses or modifies the same memory location.

This definition implies that any program written according to the old standard that
uses some other threading libraries and shares any data between those threads exhibits
undefined behavior. The memory operations are ordered by means of the happens-before
relationship that can be roughly described as follows:
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Let A and B represent operations performed by a multi-threaded process. If
A happens-before B, then the memory effects of A effectively become visible
to the thread performing B before B is performed.

The happens-before relation (denote: →) is a strict partial order and as such transitive,
irreflexive, and antisymmetric.

Transitivity: ∀a, b, c, if a→ b and b→ c, then a→ c

Irreflexivity: ∀a, a 6→ a

Antisymmetry: ∀a, b, if a→ b then b 6→ a

The complete formal definition specifically for C++ can be found in [C++12, 1.10, p.
11-14].

Sequenced-before is an asymmetric, transitive, pair-wise relation between evalua-
tions executed by a single thread, which induces a partial order among those evalua-
tions [C++12, 1.9.13, p. 10]. Given any two evaluations A and B, if A is sequenced-before
B, then the execution of A shall precede the execution of B.

A happens-before order between two operations from the same thread (source code
order) is implicitly given by the sequenced-before order [C++12, 1.10.12, p. 13]. A
happens-before order between two operations from different threads (in the standard this
is referred to as inter-thread-happens-before) must be established using atomic operations.

3.3.1 Atomic operations

The C++11 standard library introduces a new generic class std::atomic<T> that provides
the following atomic operations to work with instances of T:

• load

• store

• exchange

• compare_exchange_weak

• compare_exchange_strong

For integral and pointer types it also provides the following operations:

• fetch_add

• fetch_sub

And for integral types only it provides the following additional operations.

• fetch_and
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• fetch_or

• fetch_xor

For many of these operations the class also provides operators like the assignment operator
for store or post-fix increment for fetch_add. These operators are a nice syntactic sugar,
but they rely on the standard memory order for all operations and do not allow to
customize it. By default, all operations provide sequential consistency, but the methods
all take a parameter memory_order that allows to customize and relax the used memory
order. The available memory orders and their effects are discussed in Section 3.3.2.

The atomic class can work with any type T, regardless of its size. For types with a
size less or equal to the size of a pointer all the operations are usually lock-free. For
other types the implementation falls back to a lock-based version to achieve atomicity.
The class provides the is_lock_free method to determine whether the operations on the
given type can be performed in a lock-free manner.

3.3.2 Memory orders

Each atomic operation takes a parameter of the type memory_order which is an enum
type with the following values (from strong to relaxed):

• memory_order_seq_cst

• memory_order_acq_rel

• memory_order_release

• memory_order_acquire

• memory_order_consume

• memory_order_relaxed

As explained in Section 3.1, there is a single total order S of all sequentially consistent
operations. An operation B that performs a load on an object M will observe the result
of the last modification A of M that precedes B in S [C++12, 29.3.3, p. 1104]. From this
follows that there is always a happens-before relation between two memory_order_seq_cst
operations operating on the same object.

memory_order_consume and memory_order_acquire can only be used for operations
that perform a read, memory_order_release can only be used for operations that perform
a write and memory_order_acq_rel can only be used for operations that perform a read-
modify-write operation. Although the language does not enforce these constraints some
implementations do check them at runtime2.

2For example when the DEBUG macro is defined the Microsoft STL implementation inserts code to
verify these constraints at runtime.
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A happens-before relationship can be established by using the following combinations
of memory orders3:

• memory_order_seq_cst + memory_order_seq_cst

• memory_order_acquire + memory_order_release

• memory_order_consume + memory_order_release

An atomic operation A that performs a store-release operation on an atomic object M
synchronizes-with an atomic operation B that performs a load-acquire operation on M
and takes its value from any side effect in the release sequence (defined below) headed by
A. This synchronize-with order is compatible with the inter-thread-happens-before order.

An example can be seen in Listing 3.2: Thread A writes two values to the two
variables x and y. In order to guarantee that when thread B sees the new value of y it
also sees the new value of x, a happens-before relation has to be established. In line 5
thread A uses release semantics to store the new value of y while in line 8 thread B uses
acquire semantics to load the value of y. If this acquire load returns the value stored by
the release store the two operations synchronize-with each other, therefore establishing a
happens-before relation. Since the store to x is sequenced-before the store to y and the
load of y is sequenced-before the load of x it follows that the store to x happens-before to
load of x.

Listing 3.2: Example of synchronize-with relation with release/acquire operations.
1 std:.atomic<int> x, y;
2
3 // thread A
4 x.store(1, std::memory_order_relaxed);
5 y.store(2, std::memory_order_release);
6
7 // thread B
8 y.load(std::memory_order_acquire);
9 x.load(std::memory_order_relaxed);

memory_order_consume is based on the address dependency concept described in Sec-
tion 3.2.2. It is not only more complicated but also weaker than memory_order_acquire.
According to Hans Boehm the current definition of memory_order_consume in the standard
is not useful [Boe16]. He proposed to temporarily deprecate memory_order_consume in
C++17 and the proposal was accepted in the Oulu meeting in July 2016. Therefore I
will not go into more detail about this memory order in the course of this work.

memory_order_relaxed can never be used to create a happens-before order.
All modifications to a particular atomic object occur in some particular total order,

called the modification order. If A and B are modifications of an atomic object M and A
happens-before B, then A precedes B in the modification order of M . There are separate

3memory_order_acq_rel is the combination of memory_order_release and memory_order_acquire.
So wherever either one is used it is also possible to use memory_order_acq_rel.
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modification orders for each atomic object and there is no requirement that these can be
combined into a single total order for all objects.

Atomic read-modify-write operations shall always read the last value in the mod-
ification order written before the write associated with the read-modify-write opera-
tion [C++12, 29.3.12, p. 1105].

A release sequence is a subsequence of the modification order of an atomic object. It
is headed by a release operation A and followed by an arbitrary number of

• atomic operations performed by the same thread that performed A or

• atomic read-modify-write operations.

For operations performed by the same thread that performed A, it is not relevant which
memory order is used—it can even use memory_order_relaxed. If a thread is reading a
value that is part of a release sequence using acquire semantics, this read synchronizes-
with the release operation that is heading the sequence. Note that there can exist several
release sequences on the same object at the same time. Suppose there are two release-CAS
operation on some atomic object A. Since both use release semantics, they both act as
head of their own release sequence. And since a CAS is an atomic read-modify-write
operation, the second CAS is also part of the release sequence headed by the first CAS.
So an acquire-load on A that returns the value stored by the second CAS will actually
synchronize-with both release-CAS operations.

The C++ standard describes two different CAS operations for atomic objects:
compare_exchange_strong and compare_exchange_weak. The difference between these
operations is that compare_exchange_weak is allowed to fail spuriously, that is, act as if
*obj != *expected even if they are equal, but it can result in better performance on some
platforms. Both operations take two memory_order parameters: The first one describes
the semantics of the read and write operations in case of success, and the second one
describes the semantics of the reload operation in the failure case. In addition, the stan-
dard defines overloads for both operations taking only a single memory_order parameter.
They forward to the two parameter version, passing the given memory_order as the first
argument. The second argument is also derived from the given memory_order by removing
any semantics that are only relevant for write operations, i.e., memory_order_release
is replaced with memory_order_relaxed and memory_order_acq_rel is replaced with
memory_order_acquire.

The C++11 standard states that “the failure argument shall be no stronger than
the success argument” [C++12, 29.6.5.20, p. 1113]. But Bastien and Boehm noted that
the standard does not define the term “stronger” in this context, and also questioned
whether there is even a point in restricting success/failure orderings [BB16]. Based on
their proposal this requirement was therefore removed in C++17.

3.3.3 Fences

Another synchronization operation that can be used to establish a happens-before re-
lation is a fence [C++12, 29.8, pp. 1116]. Just like the operations on atomics the
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atomic_thread_fence operation also takes a memory_order parameter and, depending on
the order, has the following effects:

• has no effects,
if order == memory_order_relaxed

• is an acquire-fence,
if order == memory_order_acquire || order == memory_order_consume

• is a release-fence,
if order == memory_order_release

• is both an acquire-fence and a release-fence,
if order == memory_order_acq_rel

• is a sequentially consistent acquire- and release-fence,
if order == memory_order_seq_cst

A release-fence A synchronizes with an acquire-fence B if there exist atomic operations
X and Y , both operating on some atomic object M , such that A is sequenced before X,
X modifies M , Y is sequenced before B, and Y reads the value written by X or a value
written by any side effect in the hypothetical release sequence X would be heading if it
were a release operation. Alternatively a release-fence can synchronize with a load-acquire
on object M and an acquire-fence can synchronize with a store-release on object M ,
given that the same sequenced before relations between the fences and the corresponding
operation are in place.

An adapted version of the previous example can be seen in Listing 3.3. The release-
fence in line 5 is sequenced before the store operation in line 6 and the load operation
in line 9 is sequenced before the acquire-fence in line 10. Therefore, when the load
operation in line 9 returns the value written by the store operation in line 6, the
acquire-fence synchronizes with the release-fence. From here the happens-before relation
for the operations on x follows as already described in the previous example for the
release/acquire operations in Listing 3.2.

Listing 3.3: Example of synchronize-with relation with release/acquire fences.
1 std::atomic<int> x, y;
2
3 // thread A
4 x.store(1, std::memory_order_relaxed);
5 std::atomic_thread_fence(std::memory_order_release);
6 y.store(2, std::memory_order_relaxed);
7
8 // thread B
9 y.load(std::memory_order_relaxed);

10 std::atomic_thread_fence(std::memory_order_acquire);
11 x.load(std::memory_order_relaxed);
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A memory_order_seq_cst-fence is not only both a release and an acquire-fence, but
also provides some additional properties [C++12, 29.3.4-29.3.8]. They are also part of
the single total order of all sequentially consistent operations, enforcing the following
observations:

• For an atomic operation B that reads the value of an atomic object M , if there is
a memory_order_seq_cst fence X sequenced before B, then B observes either the
last memory_order_seq_cst modification of M preceding X in the total order S or
a later modification of M in its modification order.

• For atomic operations A and B on an atomic object M , where A modifies M
and B takes its value, if there is a memory_order_seq_cst fence X such that A is
sequenced before X and B follows X in S, then B observes either the effects of A
or a later modification of M in its modification order.

• For atomic operations A and B on an atomic object M , where A modifies M and
B takes its value, if there are memory_order_seq_cst fences X and Y such that A
is sequenced before X, Y is sequenced before B, and X precedes Y in S, then B
observes either the effects of A or a later modification of M in its modification
order.

• For atomic operations A and B on an atomic object M , if there are
memory_order_seq_cst fences X and Y such that A is sequenced before X, Y
is sequenced before B, and X precedes Y in S, then B occurs later than A in the
modification order of M .
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CHAPTER 4
Implementation

Almost all the proposals for reclamation schemes come with a proof-of-concept implemen-
tation, but they can usually be described as follows: An implementation that is supposed
to prove that the concept works, but not designed or implemented in a way that it would
be suitable for use in a real life application. In contrast to that, I implemented some of
the previously described schemes, using an abstract interface that allows data structures
to be designed in a reclamation scheme agnostic way. The implementations are designed
to work with an arbitrary number of threads and allow threads to be started and stopped
arbitrarily and should be suitable for use in real world applications out of the box.

The following reclamation schemes were implemented:

• Lock-free reference counting (Section 4.4.1)

• Hazard pointers (Section 4.4.2)

• Epoch based reclamation (Section 4.4.3)

• New epoch based reclamation (Section 4.4.4)

• Quiescent state based reclamation (Section 4.4.5)

• Stamp-it (Section 4.4.6)

The reason why these schemes were chosen lies in the fact that they are generic—i.e.,
they do not have to be tailored to a specific data structure like, e.g., Drop the Anchor
or Beware & Cleanup—and they are portable, i.e., they do not rely on OS or platform
specific features such as POSIX signals or Hardware Transactional Memory like, e.g.,
ThreadScan, DEBRA+ or StackTrack.

The implementation is in C++ and makes use of the C++11 memory model as well
as several other new language features that were introduced in C++11 and C++14. The
complete source code including the scripts to run the benchmarks and analyze the results
is available on GitHub https://github.com/mpoeter/emr.
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The implementation of the reclamation schemes is based on a proposal for the C++
standard by Robison [Rob13]. I made a number of changes and adaptations compared to
the original proposal; they are described in more detail in Section 4.1. Unfortunately,
this proposal does not seem to have received much attention. Even though McKenney et
al. pointed out the importance of this topic in [MWM16], they did not reference Robison’s
proposal. Instead they brought in a separate proposal to add hazard pointers to the
C++ standard library [MW16]. I chose to implement Robison’s proposal since it defines
only an abstract interface and therefore allows a large number of different reclamation
schemes to be implemented and used.

It defines the following fundamental abstractions:

• A marked_ptr allows one or more low-order bits to be borrowed. Many lock-free
algorithms rely on such mark tricks, e.g., [Har01, Boe04, ST05].

• A concurrent_ptr acts like an atomic marked_ptr, i.e., it supports atomic opera-
tions.

• A guard_ptr is an object that can atomically take a snapshot of the value of a
concurrent_ptr and if the target has not yet been deleted, guarantees that the
target will not be deleted as long as the guard_ptr holds a pointer to it.

It is important to note that only guard_ptr references protect against deletion. In
effect, a concurrent_ptr is a “weak” pointer and a guard_ptr is a “shared ownership”
pointer, conceptually similar to std::weak_ptr and std::shared_ptr with the following
key differences:

• concurrent_ptr and guard_ptr are abstract interfaces (a.k.a. “concepts”), not
concrete interfaces.

• They support a snapshot operation that is conceptually similar to the std::weak_ptr
::lock() method.

• A std::weak_ptr can indicate whether it has “expired”, i.e., its target was deleted.
A concurrent_ptr gives no such indication even if, as it can in some implementations,
point to freed memory.

Similar to the allocator in existing containers of the standard library, the reclaimer is
passed as a policy (i.e., as a template argument) to a concurrent container that requires
usage of a reclamation scheme. A reclaimer type R has to define the following abstractions
necessary for safe destruction and deletion:

• R::concurrent_ptr<T>: acts like an atomic markable pointer to objects of type T.
It supports atomic operations such as load, store, and compare_exchange_weak.
The class T must be derived from enable_concurrent_ptr.
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• R::enable_concurrent_ptr<T, N, D>: defines a mandatory base class for targets
of concurrent_ptr; T is the derived class, N is the number of mark bits supported,
which defaults to zero, and D is the deleter type that should be used for all objects
of type T.

• R::region_guard: allows some reclamation schemes to amortize the overhead; this
is explained in more detail in Section 4.1.6.

The intent of enable_concurrent_ptr<T, N, D> is to provide implementers of reclaimers
with two things:

• A way to force the alignment of targets, which is a common way to provide mark
bits in the pointers.

• A place to embed reclaimer state, such as reference counts, in the user’s objects.

The class concurrent_ptr<T> provides two auxiliary types:

• concurrent_ptr<T>::marked_ptr : Acts like a pointer, but has N mark bits, where
N is specified by the base class enable_concurrent_ptr<T, N> of T.

• concurrent_ptr<T>::guard_ptr : Similar to a marked_ptr, but has shared owner-
ship of its target if the target has not been deleted.

To obtain a snapshot from concurrent_ptr and populate a guard_ptr the acquire
and acquire_if_equal methods can be used. In wait-free algorithms, acquire may be
problematic with some schemes like hazard pointers, Pass The Buck, or even LFRC,
because it may have to loop indefinitely. For these cases acquire_if_equal can be used
as it simply stops trying if the value in variable p does not match the provided value in
variable m and reports whether it was successful or not.

Releasing a guard_ptr follows the standard smart pointer interface. For a guard_ptr
instance g, the operation g.reset releases ownership and sets g to nullptr; the destructor
of guard_ptr implicitly calls reset.

In order to release a node, the reclaim method on a guard_ptr has to be called. This
operation also resets the guard_ptr.

An example of these types and how they are used is shown in Listing 4.1.

Listing 4.1: Example how this interface is used.
1 // Let’s assume we have a type "Reclaimer" that implements this interface.
2
3 // Forward declaration of our node struct so we can use it in the following aliases.
4 struct node;
5
6 // Define a number of aliases for simpler code.
7 using concurrent_ptr = typename Reclaimer::template concurrent_ptr<node, 0>;
8 using marked_ptr = typename concurrent_ptr::marked_ptr;
9 using guard_ptr = typename concurrent_ptr::guard_ptr;

10
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11 // We want to use our node with concurrent_ptr, so we have to derive
12 // it from enable_concurrent_ptr.
13 struct node : Reclaimer::template enable_concurrent_ptr<node>
14 {};
15
16 // Let’s create a new node and store it in some publicly available concurrent_ptr.
17 marked_ptr new_node = new node();
18 concurrent_ptr cp;
19 cp.store(new_node);
20
21 // Acquire a guard to the node referenced by cp.
22 // This will protect the node from getting reclaimed as long as the guard_ptr exists.
23 guard_ptr guard;
24 guard.acquire(cp);
25
26 // Mark the node for reclamation. This will reset the guard_ptr and ensure that the
27 // node gets reclaimed once it is safe.
28 guard.reclaim();

More concrete examples can be found in the list and queue implementations in Sec-
tion 4.5.1 and Section 4.5.2.

This interface does impose a few limitations. It is not possible to implement schemes
that require data structure specific functions like, e.g., “Drop the anchor” (see Section 2.10)
or “Beware & Cleanup” (see Section 2.6).

But there are also some data structures that cannot be implemented using this
interface. One example is the doubly linked-list by Sundell [ST05], which uses a special
reference counting scheme that also considers the internal links between the nodes. Such
a scheme is not compatible with this interface.

4.1 Interface

My implementation follows the proposed interface from Robison [Rob13], but as it is
stated in the paper it is only a “sketch, not a complete proposal”, so I made the following
adaptations and corrections:

• I added move constructors and move assignment operators for marked_ptr and
guard_ptr pointer types.

• I marked move constructor and move assignment operator for concurrent_ptr as
deleted.

• I added the concept of region_guard; this is used by schemes like NEBR, QSBR
and Stamp-it to amortize the overhead.

• The comments for operator bool for marked_ptr and guard_ptr state that it should
return true if both the pointer and the mark bits are zero, which is the complete
opposite of the definition for native pointers. Therefore I implemented it consistently
with the behavior of native pointers and changed the documentation accordingly.
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• The is_lock_free method for marked_ptr and guard_ptr are not necessary, since
these classes are not designed to be used by multiple threads concurrently. So I
removed them.

• I added a conversion operator to guard_ptr to allow implicit conversion of guard_ptr
instances to marked_ptr.

• I adapted the interface of concurrent_ptr to be consistent with that of std::atomic:

– I added std::memory_order parameter to the load method that defaults to
std::memory_order_seq_cst.

– I added std::memory_order parameter to both store methods that defaults
to std::memory_order_seq_cst.

– I adapted the compare_exchange_weak methods; the interface as originally
proposed defined different overloads with all combinations of guard_ptr
/marked_ptr instances for the two parameters expected and desired. How-
ever, the compare_exchange_weak method of std::atomic loads the actual
value into expected when the comparison fails, but this would not be possible
for guard_ptr instances. The new version therefore only uses marked_ptr for
both parameters. The second parameter, which is passed by value, still accepts
guard_ptr instances since they are now implicitly convertible to marked_ptr.

– I added compare_exchange_strong methods.

• I removed the Deleter template parameter from concurrent_ptr and instead added
it to enable_concurrent_ptr; the reason for this is explained in more detail in
Section 4.1.1.

• I added a non-member function acquire_guard for easy inline initialization of
guard_ptr variables.

4.1.1 The enable_concurrent_ptr class

Every reclaimer must define a class enable_concurrent_pointer that is used as mandatory
base class for targets of concurrent_ptr. This base class does not only define the
number_of_mark_bits and an alias for the Deleter for internal use in the reclaimer, but
also allows to enforce alignment of instances or to store additional information like a
reference counter. The minimal definition of such a class can be seen in Listing 4.2.

Listing 4.2: enable_concurrent_ptr
1 template <
2 class T,
3 std::size_t N = 0,
4 class DeleterT = std::default_delete<T>>
5 struct enable_concurrent_ptr
6 {
7 static constexpr std::size_t number_of_mark_bits = N;
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8 using Deleter = DeleterT;
9 };

enable_concurrent_pointer is a class template with the following template parameters:

T is the derived class; this is an application of the curiously recurring template pattern
(CRTP) [Cop95].

N is the number of mark bits that a marked_ptr must reserve when used with this class;
this parameter defaults to zero.

DeleterT is the deleter functor that shall be applied once an object can safely be
reclaimed.

The class must define a member number_of_mark_bits that is set to N and a type alias
Deleter.

In the original proposal the Deleter was not a parameter of enable_concurrent_ptr
but of concurrent_ptr. However, all implemented reclamation schemes except LFRC
collect the to-be-reclaimed nodes in some list in order to defer reclamation until a later
time when it is safe to do so. Such a list can contain arbitrary nodes from different
data structures, potentially using different deleters. The information which deleter shall
be used must therefore be stored together with the node. But if this information is
not already part of the node itself, it would require an additional memory allocation to
store this information, even in cases where the deleter itself has no data members like
std::default_deleter. In order to avoid this additional memory allocation I decided
to move the Deleter parameter to the enabled_concurrent_ptr class, which allows to
embed Deleter instances directly in the node.

The lists are implemented as simple singly linked lists. Since they can contain
arbitrary nodes of different types, they have to derive from a common base class that
contains the next pointer and also a pure virtual function that allows deletion of the
node in consideration of custom deleters.

4.1.2 The deletable_object class

deletable_object (see Listing 4.3) is an internal helper class that is used by most of the
reclamation schemes as the common base class for enable_concurrent_ptr.

Listing 4.3: deletable_object
1 struct deletable_object
2 {
3 virtual void delete_self() = 0;
4 deletable_object* next = nullptr;
5 protected:
6 virtual ~deletable_object() = default;
7 };
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The next pointer is used to build the single-linked list of to-be-reclaimed nodes. The
pure virtual delete_self method is required because such lists contain only pointers to
deletable_object instances, but the Deleter expects an instance of the derived type.
Therefore, a derived class has to override delete_self and call the deleter with the appro-
priate parameter. To avoid duplication of this code for each reclamation scheme, I moved
it to two different base classes and again made use of the curiously recurring template
pattern to down-cast to the correct derived type which was handed down as template
parameter. The two different base classes are deletable_object_with_empty_deleter
and deletable_object_with_non_empty_deleter. I made this distinction because the
size of an empty class is not zero, but one. Unconditionally storing a deleter instance
as member in the object would therefore produce an unnecessary memory overhead
that can be avoided this way. Instead of using these classes directly, I defined an alias
deletable_object_impl that detects whether the given deleter is an empty class and
resolves to the correct base class. The full listing of these classes can be found in
Listing 4.4.

Listing 4.4: deletable_object implementations with empty and non-empty deleter
1 template <class Derived, class Deleter, class Base>
2 struct deletable_object_with_empty_deleter : Base
3 {
4 virtual void delete_self() override
5 {
6 Deleter deleter{};
7 deleter(static_cast<Derived*>(this));
8 }
9

10 void set_deleter(Deleter deleter) {}
11 };
12
13 template <class Derived, class Deleter, class Base>
14 struct deletable_object_with_non_empty_deleter : Base
15 {
16 virtual void delete_self() override
17 {
18 Deleter& my_deleter = reinterpret_cast<Deleter&>(deleter_buffer);
19 Deleter deleter(std::move(my_deleter));
20 my_deleter.~Deleter();
21 deleter(static_cast<Derived*>(this));
22 }
23
24 void set_deleter(Deleter deleter)
25 {
26 reinterpret_cast<Deleter&>(deleter_buffer) = std::move(deleter);
27 }
28 private:
29 char deleter_buffer[sizeof(Deleter)];
30 };
31
32 template <
33 class Derived,
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34 class Deleter,
35 class Base = deletable_object
36 >
37 using deletable_object_impl = std::conditional_t<
38 std::is_empty<Deleter>::value,
39 deletable_object_with_empty_deleter<Derived, Deleter, Base>,
40 deletable_object_with_non_empty_deleter<Derived, Deleter, Base>
41 >;

deletable_object_with_non_empty_deleter holds a char array as buffer for a Deleter
instance. When a deleter is set using the set_deleter method the deleter instance is
moved into the buffer. This allows the Deleter type to be non-default-constructible.

The template parameter Base defaults to deletable_object which should be fine for
most of the cases. In case there are special requirements this parameter can be used to
define a custom base class as long as it defines the same interface as deletable_object.
This is used for example in the implementation of Stamp-it because this scheme requires
that the base class has an additional field to store the stamp value from the time it was
marked for deletion.

4.1.3 The marked_ptr class

Many lock-free algorithms rely on the ability to store special flags in a pointer (e.g.,
[Har01, Boe04, ST05]). The marked_ptr class defines a high-level interface to a pointer of
which a number of low-order bits can be borrowed to store additional information. The
number of bits that shall be used for marking can be defined via a template parameter.
A complete listing of the implementation of marked_ptr can be found in Listing 4.5.

Runtime assertions ensure that the specified mark value does not use more bits than
reserved, as well as that the pointer value does not occupy bits that are reserved for
marking.

Listing 4.5: Interface of marked_ptr
1 template <class T, std::size_t N>
2 class marked_ptr {
3 public:
4 // Construct a marked ptr
5 marked_ptr(T* p = nullptr, uintptr_t mark = 0) noexcept {
6 assert(mark <= MarkMask && "mark exceeds the number of bits reserved");
7 assert((reinterpret_cast<uintptr_t>(p) & MarkMask) == 0 &&
8 "bits reserved for masking are occupied by the pointer");
9 ptr = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p) | mark);

10 }
11
12 // Set to nullptr
13 void reset() noexcept { ptr = nullptr; }
14
15 // Get mark bits
16 uintptr_t mark() const noexcept {
17 return reinterpret_cast<uintptr_t>(ptr) & MarkMask;
18 }
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19
20 // Get underlying pointer (with mark bits stripped off).
21 T* get() const noexcept {
22 return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr) & ~MarkMask);
23 }
24
25 // True if get() != nullptr || mark() != 0
26 explicit operator bool() const noexcept { return ptr != nullptr; }
27
28 // Get pointer with mark bits stripped off.
29 T* operator->() const noexcept { return get(); }
30
31 // Get reference to target of pointer.
32 T& operator*() const noexcept { return *get(); }
33
34 inline friend bool operator==(const marked_ptr& l, const marked_ptr& r) {
35 return l.ptr == r.ptr; }
36 inline friend bool operator!=(const marked_ptr& l, const marked_ptr& r) {
37 return l.ptr != r.ptr; }
38
39 static constexpr std::size_t number_of_mark_bits = N;
40 private:
41 static constexpr uintptr_t MarkMask = (1 << N) - 1;
42 T* ptr;
43 };

4.1.4 The concurrent_ptr class

A concurrent_ptr is basically an atomic marked_ptr. For consistence, I adapted it so
that it defines the same interface as std::atomic. In addition it defines aliases for the
reclaimer’s marked_ptr and guard_ptr types. A complete listing of the interface can be
found in Listing 4.6.

Listing 4.6: Interface of concurrent_ptr
1 //! T must be derived from enable_concurrent_ptr<T>. D is a deleter.
2 template <
3 class T,
4 std::size_t N,
5 template <class, std::size_t> class MarkedPtr,
6 template <class T2, class MarkedPtrT, class Deleter> class GuardPtr,
7 class DefaultDelete = std::default_delete<T>
8 >
9 class concurrent_ptr {

10 public:
11 struct marked_ptr : MarkedPtr<T, N> {};
12
13 template <class D = DefaultDelete>
14 using guard_ptr = GuardPtr<T, marked_ptr, D>;
15
16 concurrent_ptr(const marked_ptr& p = marked_ptr()) noexcept : ptr(p) {}
17 concurrent_ptr(const concurrent_ptr&) = delete;
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18 concurrent_ptr(concurrent_ptr&&) = delete;
19 concurrent_ptr& operator=(const concurrent_ptr&) = delete;
20 concurrent_ptr& operator=(concurrent_ptr&&) = delete;
21
22 // Atomic load that does not guard target from being reclaimed.
23 marked_ptr load(std::memory_order order = std::memory_order_seq_cst) const;
24
25 // Atomic store.
26 void store(const marked_ptr& src,
27 std::memory_order order = std::memory_order_seq_cst);
28
29 // Shorthand for store (src.get())
30 template <class D>
31 void store(const guard_ptr<D>& src,
32 std::memory_order order = std::memory_order_seq_cst);
33
34 bool compare_exchange_weak(marked_ptr& expected, marked_ptr desired,
35 std::memory_order order = std::memory_order_seq_cst);
36 bool compare_exchange_weak(marked_ptr& expected, marked_ptr desired,
37 std::memory_order order = std::memory_order_seq_cst) volatile;
38 bool compare_exchange_weak(marked_ptr& expected, marked_ptr desired,
39 std::memory_order success, std::memory_order failure);
40 bool compare_exchange_weak(marked_ptr& expected, marked_ptr desired,
41 std::memory_order success, std::memory_order failure) volatile;
42
43 bool compare_exchange_strong(marked_ptr& expected, marked_ptr desired,
44 std::memory_order order = std::memory_order_seq_cst);
45 bool compare_exchange_strong(marked_ptr& expected, marked_ptr desired,
46 std::memory_order order = std::memory_order_seq_cst) volatile;
47 bool compare_exchange_strong(marked_ptr& expected, marked_ptr desired,
48 std::memory_order success, std::memory_order failure);
49 bool compare_exchange_strong(marked_ptr& expected, marked_ptr desired,
50 std::memory_order success, std::memory_order failure) volatile;
51 };

4.1.5 The guard_ptr class

A guard_ptr is basically a marked_ptr that protects the object that it points to from being
reclaimed. In that sense it is conceptually similar to a std::shared_ptr. In contrast to
the other two pointer types, guard_ptr implementations are very specific to the concrete
reclamation scheme. A complete listing of the interface can be found in Listing 4.7.

Listing 4.7: Interface of guard_ptr
1 template <class T>
2 class guard_ptr
3 {
4 using Deleter = typename T::Deleter;
5 public:
6 guard_ptr() noexcept;
7 ~guard_ptr();
8
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9 // Guard a marked ptr.
10 guard_ptr(const marked_ptr& p);
11
12 explicit guard_ptr(const guard_ptr& p);
13 guard_ptr(guard_ptr&& p) noexcept;
14
15 guard_ptr& operator=(const guard_ptr& p) noexcept;
16 guard_ptr& operator=(guard_ptr&& p) noexcept;
17
18 // Get underlying pointer
19 T* get() const noexcept;
20
21 // Get mark bits
22 uintptr_t mark() const noexcept;
23
24 // Support implicit conversion from guard_ptr to marked_ptr.
25 operator marked_ptr() const noexcept;
26
27 // True if get() != nullptr || mark() != 0
28 explicit operator bool() const noexcept;
29
30 // Get pointer with mark bits stripped off. Undefined if target has been reclaimed.
31 T* operator->() const noexcept;
32
33 // Get reference to target of pointer. Undefined if target has been reclaimed.
34 T& operator*() const noexcept;
35
36 // Swap two guards.
37 void swap(guard_ptr& g) noexcept;
38
39 // Atomically take snapshot of p, and *if* it points to unreclaimed object,
40 // acquire shared ownership of it.
41 void acquire(concurrent_ptr<T>& p,
42 std::memory_order order = std::memory_order_seq_cst);
43
44 // Like acquire, but quit early if p != expected.
45 bool acquire_if_equal(concurrent_ptr<T>& p,
46 const marked_ptr& expected
47 std::memory_order order = std::memory_order_seq_cst);
48
49 // Release ownership. Postcondition: get() == nullptr.
50 void reset() noexcept;
51
52 // Reset. Deleter d will be applied some time after all owners release their

ownership.
53 void reclaim(Deleter d = Deleter()) noexcept;
54 };

A guard_ptr has to be acquired by the methods acquire or acquire_if_equal to ensure
that the guard_ptr holds a safe reference that protects the object from being reclaimed.
These methods take a snapshot of the value of a concurrent_ptr and store a safe reference
to the object in the guard_ptr if the target has not yet been deleted.
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In wait-free algorithms acquire may be problematic when implemented with hazard
pointers or Pass The Buck, because it may have to loop indefinitely in order to acquire a
safe reference. In these cases acquire_if_equal can be used as it simply stops trying if
the value in p does not match a provided value m and reports whether it was successful
or not.

Both methods, acquire and acquire_if_equal take an optional memory_order pa-
rameter that defines the order of the read operation on the concurrent_ptr object p.
The default value is memory_order_seq_cst.

Releasing a guard_ptr follows the standard smart pointer interface; the operation
g.reset releases ownership and sets g to nullptr, the destructor of guard_ptr implicitly
calls reset.

The reclaim method resets the guard_ptr and marks the node for deletion.
One important limitation of guard_ptrs is that they must not be moved between

threads, i.e., move construction or move assignment operations must not be used to
transfer ownership of a guard_ptr from one thread to another. The reason for this simply
is that these move operations are optimized based on the assumption that both, the
target and the source operands, belong to the same thread. However, copy construction
and copy assignment do not suffer from this limitation.

Reimplementing the whole interface for every reclamation scheme would result in a lot
of code duplication as many methods like get, mark and swap as well as all the operators
would be identical. For that reason I introduced a base class using the curiously recurring
template pattern (CRTP) [Cop95]1 that already provides implementations for all these
methods and operators (see Listing 4.8). The CRTP is used for forwarding to scheme
specific implementations of methods like reset, which is required in the destructor and
in swap. The swap method is implemented by swapping the two underlying marked_ptr
values and then calling do_swap on the derived class to allow implementation of scheme
specific behavior. For schemes where this is not needed do_swap is already implemented
as an empty dummy function in the base class.

Listing 4.8: guard_ptr base class
1 template <class T, class MarkedPtr, class Derived>
2 class guard_ptr {
3 public:
4 ~guard_ptr() { self().reset(); }
5
6 T* get() const noexcept { return ptr.get(); }
7 uintptr_t mark() const noexcept { return ptr.mark(); }
8
9 operator MarkedPtr() const noexcept { return ptr; }

10 explicit operator bool() const noexcept { return static_cast<bool>(ptr); }
11

1The “curiously recurring template pattern” is a C++ idiom in which a class X derives from a class
template instantiation using itself as template argument. The purpose of doing this is to use the derived
class in the base class. From the perspective of the base object, the derived object is itself, but downcasted.
Therefore, the base class can access the derived class by performing a static_cast on itself using the
given template parameter.
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12 T* operator->() const noexcept { return ptr.get(); }
13 T& operator*() const noexcept { return *ptr; }
14
15 // Swap two guards
16 void swap(Derived& g) noexcept
17 {
18 std::swap(ptr, g.ptr);
19 self().do_swap(g);
20 }
21
22 protected:
23 guard_ptr(const MarkedPtr& p = MarkedPtr{}) noexcept : ptr(p) {}
24 MarkedPtr ptr;
25
26 void do_swap(Derived& g) noexcept {} // empty dummy
27
28 private:
29 Derived& self() { return static_cast<Derived&>(*this); }
30 };

4.1.6 The region_guard class

A region_guard is an additional concept that I introduce, because it is required for
reclamation schemes like NEBR, QSBR and Stamp-it. In these schemes a guard_ptr can
only exist inside a critical region, so unless the thread is already inside a critical region
the guard_ptr automatically enters a new one. Entering and leaving critical regions are
usually rather expensive operations, but region_guards allow to amortize this overhead.
The constructor of a region_guard enters a new region (unless the thread is already
inside one) and leaves the region in the destructor. Any guard_ptr instances that are
created inside the scope of the region_guard can simply use the current critical region
and save the overhead of entering a new one.

The region_guard class does not define any member functions, it only uses the RAII2
concept to leave the region upon destruction.

In order to provide a consistent interface every reclamation scheme has to define
a region_guard class regardless of whether the scheme actually supports this concept.
For reclamation schemes that do not support it, it is sufficient to define an empty
region_guard class.

4.2 Correctness

The main task of a reclamation scheme is to ensure that a node only gets reclaimed when
it is guaranteed that no thread is holding a reference to it. The respective publications of
the various schemes usually contain correctness proofs. Like most publications, however,
they usually assume a sequentially consistent memory model. In my implementation

2Resource Acquisition Is Initialization: http://en.cppreference.com/w/cpp/language/raii
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I tried to relax all memory operations as much as possible, so based on the semantics
of the C++11 memory model it has to be shown that the required properties are still
fulfilled.

Without sequential consistency, there is another important aspect that has to be
considered. It must be ensured that all changes made to a node are visible to the thread
that reclaims that node, i.e., there must be a happens-before relation between the reclaim
operation of the node and any changes made to that node. Since a thread can only access
a node while it is holding a guard_ptr, there is a happens-before relation between any
changes made to the node and the subsequent reset of the guard_ptr. What remains
to be shown is that there is also a happens-before relation between the reset and the
node’s reclamation.

I will not provide complete formal proofs for the implementations of all the schemes
and data structures, but I provide arguments about the correctness of key functions,
taking into account possible thread interactions. In particular I will show that the
implementations fulfill the just described key properties for all reclamation schemes.

In the source code all the relevant atomic operations have a comment with a number
and a short explanation, an example is shown in Listing 4.9. The acquire-load operation in
this example has the number 1 and it synchronizes-with one of the release-CAS operations
with the numbers 3, 5 or 8, depending on the value read.

Listing 4.9: Example for atomic operation with comment.
1 // (1) - this acquire-load synchronizes-with the release-CAS (3, 5, 8).
2 t.load(tail, std::memory_order_acquire);

In the correctness arguments the atomic operations are presented like this:

t1: p.load(1)
acq

This denotes that thread t1 performs a load operation with memory_order_acquire on
object p. The superscript “(1)” denotes that this operation has the number 1 in the
source code. This allows an easy mapping of the operations in the arguments to the
actual source code and vice versa. When a sequence of operations is executed by a single
thread tx, the prefix tx is only shown for the first operation, for the remaining operations
in the sequence it is omitted to reduce clutter. For CAS operations the second memory
order (if used) is also listed in the subscript.

For the operations’ memory orderings the following abbreviations are used in the
subscripts:

rlx − memory_order_relaxed
rel − memory_order_release
acq − memory_order_acquire
ar − memory_order_acq_rel
sc − memory_order_seq_cst
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For the relations between two operations the following nomenclature is used:

a
sb−−→ b − denotes that a is sequenced-before b.

arel
sw−−−→ bacq − denotes that acquire operation b synchronizes-with the release oper-

ation a.
a

hb−−→ b − denotes that a happens-before b.
a

rf−−→ b − denotes that b reads-from a, i.e., the value load by operation b is
the value stored by operation a.

o.a
mo−−−→ o.b − denotes that a and b are both operations on object o where a is

ordered before b in the modification-order of object o.
a

sco−−−→ b − denotes that a and b are both sequentially consistent operations
and a is ordered before b in the single total order of all sequentially
consistent operations.

arel[b, c, ...] − denotes that a is an operation with release semantic acting as head
of a release sequence that may contain an arbitrary number of the
operations b, c etc. in an arbitrary order. An acquire-load operation l

that reads any value written by one of these operations (i.e., x
rf−−→ l,

where x ∈ {a, b, c...}) will therefore synchronize-with a.

In C++ CAS operations are called compare_exchange, but to save some space they are
written as cmpxchg in these annotations.

4.3 Helper classes
A number of helper classes have been implemented which are shared by several different
reclamation schemes. Some of the more important ones are described in the next sections.

4.3.1 The thread_block_list class

This class is used by all schemes except LFRC to manage a number of entries, where each
thread that participates in the scheme owns exactly one such entry. Each scheme defines a
class thread_control_block that is passed to thread_block_list as template argument
and defines the type of the list’s entries. The only requirement for these types is that
they have to derive from thread_block_list::entry. Each scheme thus defines a global
thread_block_list instance that manages all the thread_control_block instances.

Unfortunately, the memory reclamation problem also applies to the entries of this list,
and since the list is part of the reclamation scheme itself, we cannot rely on the scheme
to solve it. For that reason an entry that has been added to the list cannot be freed and
has to exist indefinitely. However, when a terminating thread releases its entry it gets
marked as unused, allowing newly started threads to reuse this entry. The total number
of entries is therefore bounded by the maximum number of concurrently running threads.

In addition the data structure also contains a linked list of abandoned retired nodes.
This is used to solve the problem that occurs when a thread terminates but still holds
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some retired nodes that cannot yet be reclaimed. The idea is that the terminating thread
abandons these nodes by adding them to a linked list in the global thread_block_list.
Other threads regularly check whether this list contains any entries and if that is the
case try to adopt them, thus making sure that all nodes will be reclaimed eventually.

The thread_block_list class defines two nested classes:

• iterator – an implementation of the standard C++ forward iterator concept that
allows traversing the list.

• entry – this is the base class for all list entries. It contains the in_use flag and the
next_entry pointer.

In addition it provides the following methods:

• acquire_entry – tries to adopt an existing but abandoned entry from the list or, if
this fails, creates a new entry and adds it to the list. The return value is a reference
to the adopted/created instance.

• release_entry – simply marks the entry as abandoned so that other threads can
pick it up.

• abandon_retired_nodes – adds the given nodes to the linked list of abandoned
retired nodes.

• adopt_abandoned_retired_nodes – checks if there are abandoned nodes and tries
to adopt them.

• begin and end – return iterators that allow traversing the list entries.

The respective reclamation schemes are responsible to ensure that newly started threads
are handled correctly when iterating the thread_block_list as the list’s implementation
uses only acquire/release semantic and thus does not guarantee that newly added threads
are already visible when loading the begin iterator.

4.3.2 The aligned_object class

The default operator new uses an allocator that only guarantees fundamental alignment.
Improved versions that also allow allocation of over-aligned data, i.e., data with alignment
greater than the default alignment which usually corresponds to the system’s native
pointer size, are in discussion for C++17 [Nel16]. The aligned_object class (shown in
Listing 4.10) defines operator new and operator delete to allow dynamic allocation of
objects with custom alignment. A class with special alignment requirements can simply
inherit from aligned_object, passing itself as template argument. The appropriate
alignment is either obtained via std::alignment_of or it can be explicitly passed as
template argument.
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Listing 4.10: aligned_object
1 template <typename Derived, std::size_t Alignment = 0>
2 struct aligned_object
3 {
4 static void* operator new(size_t sz)
5 {
6 return boost::alignment::aligned_alloc(
7 Alignment == 0 ? std::alignment_of<Derived>() : Alignment, sz);
8 }
9

10 static void operator delete(void* p)
11 {
12 boost::alignment::aligned_free(p);
13 }
14 };

The Alignment template parameter defaults to zero instead of std::alignment_of<
Derived> because when a class derives from aligned_object and passes itself as template
argument, the class is not yet fully defined and trying to get the alignment of an incomplete
type results in a compiler error.

4.4 Reclamation schemes

The implementation of the reclamation schemes is not tailored to the benchmarks, but is
kept as generic as possible so that they can actually be used in real-world application. All
schemes (except LFRC) support the use of custom deleters and they are all designed to
work with an arbitrary number of threads that can be spawned and stopped arbitrarily.
The number of threads can be dynamic and does not have to be known at compile time.

The description of the reclamation schemes focuses on the implementation details
of enable_concurrent_ptr, guard_ptr, region_guard (if appropriate) and other classes
that are specific to the respective scheme.

4.4.1 Lock-Free Reference Counting

The implementation of lock-free reference counting takes the following template parame-
ters:

• InsertPadding – if set to true, additional padding bytes are inserted after the
members of enable_concurrent_ptr to ensure that the members of any inherited
class are in a different cache line and therefore no false sharing can appear. The
default value is false.

• ThreadLocalFreeListSize – defines the number of elements per thread used in the
local free list buffer to reduce contention on the global free list. The default value
is zero, i.e., local free lists are completely deactivated.
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Michael [Mic04a] and Hart et al. [HMBW07] have evaluated the performance of LFRC
in comparison to other reclamation schemes and all the results showed rather bad perfor-
mance for LFRC. However, I have not found any publications on possible performance
improvements for LFRC. I have introduced these two parameters to evaluate their impact
on the performance; a detailed analysis of the results can be found in Section 5.1.

4.4.1.1 The enable_concurrent_ptr class

In a first attempt I tried to embed the ref_count as a normal member directly in the
class. Unfortunately, this approach had several problems that were all related to the
fact that the ref_count of an object has to remain indefinitely and must not be altered
during construction or destruction of an object. In this first attempt the ref_count
was initialized once when the memory was allocated in operator new. Subsequent calls
to operator new that pop the node from the free list must maintain the integrity of
ref_count and not change its value. However, value-initialization of an object3 can cause
zero-initialization under certain circumstances4, i.e., the whole memory of the object gets
zeroed out before the default constructor is called, therefore invalidating the ref_count.

While this behavior is highly unintuitive, there are ways to avoid it that would
have to be carefully documented in detail. But unfortunately it gets even worse—
according to the C++ standard memory returned by operator new has “indeterminate
value”[C++12][8.5.12, p. 191]. Therefore, every operation in operator new that writes to
the newly allocated memory can be considered a dead store and can therefore be optimized
away. The GCC 6 release contains a more aggressive dead-store elimination specifically
targeted for these cases5. And not only is the memory before object construction defined
to be indeterminate, but the same goes for the memory after destruction. Relying on the
integrity of the ref_count after object destruction is therefore undefined behavior.

To keep a long story short: It is simply not possible to implement this scheme in a
standard conformable way with ref_count being a normal class member. For that reason
I switched to a different approach, in which the ref_count is moved to a separate header
structure that is located in memory directly before the node.

The enable_concurrent_ptr class definition is shown in Listing 4.11. Its only data
member is the next_free pointer that is required by the free list. Aside from that it
defines custom operator new and operator delete. There are also two nested classes:
unpadded_header contains the ref_count and a flag that is required to avoid calling
the destructor on an already destroyed object; this is explained later in more detail.
padded_header inherits from unpadded_header and only adds an additional padding
member to ensure that the ref_count does not share a cacheline with the actual node
that follows immediately in memory. Depending on whether InsertPadding is set, header
is defined as an alias for unpadded_header or padded_header.

3An object gets value-initialized when the initializer is an empty set of parentheses [C++12][8.5.11,
p. 191].

4The details on when value-initialization actually causes zero-initialization are rather complicated.
For those who are really interested in the gory details see [C++12][8.5.8, p. 191].

5https://gcc.gnu.org/gcc-6/porting_to.html#flifetime-dse
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The global free-list is implemented as a nested class of enable_concurrent_ptr (see
Section 4.4.1.2).

Listing 4.11: LFRC’s enable_concurrent_ptr
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class DeleterT>
3 class lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::

enable_concurrent_ptr
4 {
5 protected:
6 enable_concurrent_ptr() noexcept {
7 destroyed().store(false, std::memory_order_relaxed); }
8 enable_concurrent_ptr(const enable_concurrent_ptr&) noexcept = delete;
9 enable_concurrent_ptr(enable_concurrent_ptr&&) noexcept = delete;

10 enable_concurrent_ptr& operator=(const enable_concurrent_ptr&) noexcept = delete;
11 enable_concurrent_ptr& operator=(enable_concurrent_ptr&&) noexcept = delete;
12 virtual ~enable_concurrent_ptr() noexcept {
13 destroyed().store(true, std::memory_order_relaxed); }
14 public:
15 using Deleter = DeleterT;
16 static_assert(std::is_same<Deleter, std::default_delete<T>>::value,
17 "lock_free_ref_count reclamation can only be used with "
18 "std::default_delete as Deleter.");
19
20 static constexpr std::size_t number_of_mark_bits = N;
21 unsigned refs() const {
22 return getHeader()->ref_count.load(std::memory_order_relaxed) >> 1; }
23
24 void* operator new(size_t sz);
25 void operator delete(void* p);
26
27 private:
28 bool decrement_refcnt();
29 bool is_destroyed() const {
30 return getHeader()->destroyed.load(std::memory_order_relaxed); }
31 void push_to_free_list() { global_free_list.push(static_cast<T*>(this)); }
32
33 struct unpadded_header {
34 std::atomic<unsigned> ref_count;
35 std::atomic<bool> destroyed;
36 };
37 struct padded_header : unpadded_header {
38 char padding[64 - sizeof(unpadded_header)];
39 };
40 using header = std::conditional_t<InsertPadding, padded_header, unpadded_header>;
41 header* getHeader() { return static_cast<header*>(static_cast<void*>(this)) - 1; }
42 const header* getHeader() const {
43 return static_cast<const header*>(static_cast<const void*>(this)) - 1; }
44
45 std::atomic<unsigned>& ref_count() { return getHeader()->ref_count; }
46 std::atomic<bool>& destroyed() { return getHeader()->destroyed; }
47 concurrent_ptr<T, N> next_free;
48
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49 friend class lock_free_ref_count;
50
51 using guard_ptr = typename concurrent_ptr<T, N>::guard_ptr;
52 using marked_ptr = typename concurrent_ptr<T, N>::marked_ptr;
53
54 class free_list;
55 static free_list global_free_list;
56 };

The constructor sets the destroyed flag to false to signal that this is a freshly initialized
object that has not yet been destroyed, while the destructor sets destroyed to true to
signal the opposite.

The LSB of ref_count is used as claim-bit to ensure that an object is only added to the
free-list by a single thread. Therefore two constants RefCountInc and RefCountClaimBit
are defined for updating the ref_count. For newly created objects ref_count is always
initialized to RefCountInc, i.e., the reference count is 1.

For objects that are taken from the free-list the ref_count is incremented and the
claim-bit is reset to zero.

The operator new (shown in Listing 4.12) first tries to pop an element from the
global free-list and if that fails calls ::operator new to allocate memory for a new node
plus the leading header. For this newly allocated memory the ref_count gets initialized
to RefCountInc and the pointer gets increased by sizeof(header) to get the actual node
pointer.

Listing 4.12: LFRC’s operator new
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 void* lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::operator new(size_t sz)
5 {
6 T* result = global_free_list.pop();
7 if (result == nullptr)
8 {
9 auto h = static_cast<header*>(::operator new(sz + sizeof(header)));

10 h->ref_count.store(RefCountInc, std::memory_order_relaxed);
11 result = static_cast<T*>(static_cast<void*>(h + 1));
12 }
13
14 return result;
15 }

The operator delete (shown in Listing 4.13) calls decrement_refcnt to reduce the
ref_count and only if it returns true, i.e., the claim-bit was set successfully, it can
continue and push the object on the global free-list.

Listing 4.13: LFRC’s operator delete
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
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4 enable_concurrent_ptr<T, N, Deleter>::operator delete(void* p)
5 {
6 auto node = static_cast<T*>(p);
7 if (node->decrement_refcnt())
8 node->push_to_free_list();
9 }

When an operator delete is called on an object, the compiler first calls the destructor
on that object before the actual operator delete is called. Suppose a new node gets
allocated and immediately destroyed by manually calling delete on it. This would first call
the destructor and subsequently operator delete, which in turn calls decrement_refcnt.
However, it is not guaranteed that this call to decrement_refcnt brings the ref_count
down to zero, since it could be that another thread has also gathered a reference to this
node when they were competing on getting a node from the free-list. Eventually the
second thread will also release its reference, at which point ref_count might drop to zero,
so the second thread would now be responsible for reclaiming the node. However, it must
not call delete on the node since this would lead to the execution of the destructor on an
already destroyed object—a direct path to the land of undefined behavior. That is why
we need a flag to determine whether the node already got destroyed or not. Listing 4.18
shows how this is handled in guard_ptr::reset.

4.4.1.2 The free_list class

The free_list (see Listing 4.14) consists of a singly-linked list as well as a thread-local
free-list that can be activated optionally. It contains only two public methods that allow
to push or pop nodes.

Listing 4.14: LFRC’s free_list
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 class lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::free_list
5 {
6 public:
7 T* pop();
8 void push(T* node);
9

10 private:
11 void add_nodes(T* first, T* last);
12
13 // the free list is implemented as a FILO single linked list
14 // the LSB of a node’s ref_count acts as claim bit, so for all nodes on the free

list the bit has to be set
15 concurrent_ptr<T, N> head;
16
17 class thread_local_free_list
18 {
19 public:
20 ~thread_local_free_list() noexcept;
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21 bool push(T* node);
22 T* pop();
23 private:
24 size_t number_of_elements = 0;
25 T* head = nullptr;
26 };
27
28 static constexpr size_t max_local_elements = ThreadLocalFreeListSize;
29 static thread_local_free_list& local_free_list()
30 {
31 // workaround for gcc issue causing redefinition of __tls_guard when
32 // defining this as static thread_local member of free_list.
33 alignas(64) static thread_local thread_local_free_list local_free_list;
34 return local_free_list;
35 }
36 };

The thread_local_free_list is a simple singly-linked list with a bounded number of
entries. Since its push and pop methods operate on thread-local objects, they are
straight forward and are therefore omitted here. When a thread terminates it calls the
destructor of its thread_local_free_list which adds all remaining nodes (if any) to
the global free list, so that they are not leaked. Unfortunately defining a destructor for
thread_local_free_list causes an issue with gcc complaining about a redefinition of
__tls_guard (the other definition stems from one of the other implemented schemes) when
local_free_list is defined as a simple static thread_local member. As workaround
for this issue a static function with a static thread_local variable is used instead.

When a thread terminates, any remaining nodes from the local free-list are added to
the global free-list so that they are not leaked. This is done using the add_nodes method
(shown in Listing 4.15). It takes two pointers to nodes that must build a singly-linked
list in which first points to the first node and last to the last node of the list, i.e.,
the next_free links must form a path from first to last. In order to add the given
nodes to the global free-list, add_nodes first loads the head pointer, stores its value in the
last’s next_free pointer and then performs a CAS operation in an attempt to update
head to first. The load operation uses acquire semantics to synchronize it with the
release-CAS operation performed by previous add_nodes operations. The same goes for
the CAS operation if the comparison fails and it has to perform a reload.

Listing 4.15: LFRC’s free_list::add_nodes
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::free_list::add_nodes(T* first, T* last)
5 {
6 // (2) - this acquire-load synchronizes-with the release-CAS (3)
7 auto old = head.load(std::memory_order_acquire);
8 do {
9 last->next_free.store(old, std::memory_order_relaxed);

10 // (3) - if this release-CAS succeeds, it synchronizes-with acquire-loads (1, 2)
11 // if it failes, the reload synchronizes-with itself (3)
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12 } while (!head.compare_exchange_weak(old, first,
13 std::memory_order_release,
14 std::memory_order_acquire));
15 }

The free_list::push operation is shown in Listing 4.16. It first checks whether local
free-lists are enabled, i.e., if max_local_elements is greater zero, and if so tries to push
the node onto the local free-list. Since max_local_elements is a compile time constant
this whole if-statement will be optimized away when local free-lists are disabled by setting
this value to zero. Otherwise, the node is added to the global free-list. For this we simply
reuse the previously described add_nodes method and treat our node as a singly-linked
list with a single entry.

Listing 4.16: LFRC’s free_list::push
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::free_list::push(T* node)
5 {
6 if (max_local_elements > 0 && local_free_list().push(node))
7 return;
8
9 add_nodes(node, node);

10 }

The free_list::pop operation (shown in Listing 4.17) is more complicated. First it
also checks whether local free-lists are enabled, and if that is the case it tries to pop a
node from the local free-list, otherwise it tries to take a node from the global free-list.
Therefore it acquires a guard_ptr for the head. This is necessary to prevent the node
from getting re-added to the list as long as the operation has not finished, effectively
avoiding the ABA problem. The acquire_guard operation uses acquire semantics in
order to synchronize with the release-CAS operation in push. Then it tries to remove
the first entry by updating head with the next_free value. This operation uses relaxed
semantics since it is a read-modify-write operation that, in case of success, always comes
after a successful CAS operation in push in the modification order of head, and as such it
is part of a release sequence. Any operation that performs an acquire-load on head that
“sees” the value written by this CAS therefore synchronizes with the CAS that heads
the release sequence (i.e., the CAS in push). This ensures the necessary happens-before
relation between a push and a subsequent pop of the same node.

After the entry was removed successfully, the ref_count is updated to clear the
ClaimBit and increase the reference count.

Listing 4.17: LFRC’s free_list::pop
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 T* lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::free_list::pop()
5 {
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6 if (max_local_elements > 0)
7 if (auto result = local_free_list().pop())
8 return result;
9

10 guard_ptr guard;
11 while (true)
12 {
13 // (1) - this acquire-load synchronizes-with the release-CAS (3)
14 guard = acquire_guard(head, std::memory_order_acquire);
15 if (guard.get() == nullptr)
16 return nullptr;
17
18 // Note: ref_count can be anything here since multiple threads
19 // could have gotten a reference to the node on the freelist.
20 marked_ptr expected(guard);
21 // since head is only changed via CAS operations it is sufficient to use
22 // relaxed order for this operation as it is always part of a release-sequence
23 // headed by (3)
24 if (head.compare_exchange_weak(
25 expected,
26 guard->next_free.load(std::memory_order_relaxed),
27 std::memory_order_relaxed))
28 {
29 auto ptr = guard.get();
30 // clear claim bit
31 ptr->ref_count().fetch_sub(RefCountClaimBit, std::memory_order_relaxed);
32 ptr->next_free.store(nullptr, std::memory_order_relaxed);
33 guard.ptr.reset(); // reset guard_ptr to prevent decrement of ref_count
34 return ptr;
35 }
36 }
37 }

4.4.1.3 The guard_ptr class

The guard_ptr protects a shared object by ensuring that, as long as the guard_ptr
holds a reference to that object, its ref_count cannot drop to zero. To achieve this the
guard_ptr increments the ref_count of the object when:

• the guard_ptr is constructed with a marked_ptr

• the acquire or acquire_if_equal method is called to acquire a safe reference from
a concurrent_ptr

• the guard_ptr gets copy constructed or copy assigned

Move construction and move assignment does not alter the ref_count as it simply moves
ownership and clears the source guard_ptr.

The ref_count gets decremented when a guard_ptr gets reset; the destructor implic-
itly calls reset in case it holds a valid reference. The implementation of reset (shown in
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Listing 4.18) first calls decrement_refcnt. If it returns true, i.e., if the claim bit was set
successfully, it checks if the object has already been destroyed and if not explicitly calls
the destructor. Only then the object is pushed onto the free-list.

Listing 4.18: LFRC’s guard_ptr::reset
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, class MarkedPtr>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 guard_ptr<T, MarkedPtr>::reset() noexcept
5 {
6 auto p = this->ptr.get();
7 this->ptr.reset();
8 if (p == nullptr)
9 return;

10
11 if (p->decrement_refcnt())
12 {
13 if (!p->is_destroyed())
14 p->~T();
15
16 p->push_to_free_list();
17 }
18 }

An object can be reclaimed once ref_count drops to zero. Since the ref_count gets
initialized with RefCountInc, an additional decrement has to be performed in reclaim be-
fore resetting the guard_ptr. The decrement_refcnt method of enable_concurrent_ptr
(shown in Listing 4.19) returns true when the ref_count has reached zero and this thread
has successfully set the claim-bit. It contains a single CAS operation that is used to
decrement the ref_count and, if the counter drops to zero, implicitly set the claim-bit.
When the CAS performs a simple decrement it uses release-semantics, but when a thread
tries to set the claim-bit it uses acquire-semantic. The reason for this is explained in
more detail in Section 4.4.1.5.

Listing 4.19: LFRC’s enable_concurrent_ptr::decrement_refcnt
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, std::size_t N, class Deleter>
3 bool lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 enable_concurrent_ptr<T, N, Deleter>::decrement_refcnt()
5 {
6 unsigned old_refcnt, new_refcnt;
7 do {
8 old_refcnt = ref_count().load(std::memory_order_relaxed);
9 new_refcnt = old_refcnt - RefCountInc;

10 if (new_refcnt == 0)
11 new_refcnt = RefCountClaimBit;
12 // (4) - this release/acquire CAS synchronizes with itself
13 } while (!ref_count().compare_exchange_weak(old_refcnt, new_refcnt,
14 new_refcnt == RefCountClaimBit
15 ? std::memory_order_acquire

61



16 : std::memory_order_release,
17 std::memory_order_relaxed));
18
19 // free node iff ref_count is zero AND we’re the first thread to "claim" this node

for reclamation.
20 return (old_refcnt - new_refcnt) & RefCountClaimBit;
21 }

The reclaim method (shown in Listing 4.20) performs the additional decrement of
ref_count as already described. The according fetch_sub operation uses release semantics
to synchronize-with the fetch_add operation in acquire (see Listing 4.21). All other
operations that alter ref_count are read-modify-write operations and are therefore part
of a release sequence headed by reclaim. The described synchronize-with relation is
therefore also established even in cases where other operations interfere and update
ref_count.

Listing 4.20: LFRC’s guard_ptr::reclaim
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, class MarkedPtr>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 guard_ptr<T, MarkedPtr>::reclaim(Deleter d) noexcept
5 {
6 if (this->ptr.get() != nullptr)
7 {
8 // ref_count was initialized with "1", so we need an additional
9 // decrement to ensure that the node gets reclaimed.

10 // ref_count cannot drop to zero here -> no check required.
11 // (7) - this release-fetch-sub synchronizes-with the acquire-fetch-add (5, 6)
12 this->ptr->ref_count().fetch_sub(RefCountInc, std::memory_order_release);
13 }
14 reset();
15 }

Listing 4.21: LFRC’s guard_ptr::acquire
1 template <bool InsertPadding, size_t ThreadLocalFreeListSize>
2 template <class T, class MarkedPtr>
3 void lock_free_ref_count<InsertPadding, ThreadLocalFreeListSize>::
4 guard_ptr<T, MarkedPtr>::acquire(concurrent_ptr<T>& p,
5 std::memory_order order) noexcept
6 {
7 for (;;)
8 {
9 reset();

10 auto q = p.load(std::memory_order_relaxed);
11 this->ptr = q;
12 if (q.get() == nullptr)
13 return;
14
15 // (5) - this acquire-fetch_add synchronizes-with the release-fetch_sub (7)
16 // this ensures that a change to p becomes visible
17 q->ref_count().fetch_add(RefCountInc, std::memory_order_acquire);
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18
19 if (q == p.load(order))
20 return;
21 }
22 }

4.4.1.4 The region_guard class

LFRC does not use the concept of region_guard’s and therefore only defines an empty
dummy class.

4.4.1.5 Correctness

Suppose a pointer p in a data structure references the node n. Assume, without loss of
generality, that thread t1 removes n from the data structure. After the node has been
removed it calls reclaim to mark the node for reclamation. For LFRC this means that
the ref_count gets decremented by a fetch_sub operation with memory_order_release
(4.1). reclaim internally also resets the guard_ptr, causing another decrement of the
reference counter.

A thread that tries to acquire a safe reference from a pointer p first reads the pointer’s
value, increments the ref_count of the returned node and then re-checks that p’s value
is unchanged (4.2).

t1 : p.storerel︸ ︷︷ ︸
remove(n)

sb−−→ n.ref_count.fetch_sub(7)
rel︸ ︷︷ ︸

guard_ptr.reclaim

(4.1)

t2 : n.ref_count.fetch_add(5)
acq

sb−−→ p.loadacq︸ ︷︷ ︸
guard_ptr.acquire

(4.2)

Suppose that another thread t2 got a reference to n by reading p before it was updated,
but did not yet increment the ref_count. If t2’s increment happens-before t1’s second
decrement, i.e., it is first in the modification order of n’s ref_count, then ref_count
cannot drop to zero and t2 therefore has a safe reference to n, regardless of whether it
recognizes that p has already been changed (4.3). If, however, the decrement is first in the
modification order, then the acquire-increment synchronizes-with the release-decrement,
effectively establishing a happens-before order between the update to p by t1 and the
reload of p by t2 (4.4). Thus, t2 recognizes that p has changed in the meantime and that
it has to retry.

t2: n.ref_count.fetch_add(5)
acq

mo−−−→ t1: n.ref_count.fetch_sub
(7)
rel =⇒

t2 has a safe reference to n
(4.3)

t1: n.ref_count.fetch_sub
(7)
rel

mo−−−→ t2: n.ref_count.fetch_add(5)
acq =⇒

t1: n.ref_count.fetch_sub
(7)
rel

sw−−−→ t2: n.ref_count.fetch_add(5)
acq =⇒

t1: p.storerel
hb−−−→ t2: p.loadacq i.e., t2 recognizes that p has changed.

(4.4)

63



The happens-before relation between changes made to a node and reclamation of that
node is established via changes to ref_count. Suppose that thread t1 wants to reclaim
a node n that was protected by t2. When t2 drops its reference to n, it performs a
release-CAS to decrement n’s ref_count (4.6). When t1 drops its reference to n, it
recognizes that it is the last thread, so it performs a CAS operation to decrement the
ref_count and implicitly set the claim-bit, but in this case it uses acquire-sematics (4.5).
Assume that t1 can successfully set the claim-bit. This implies that the CAS by t2
precedes the CAS by t1 in ref_count’s modification order.

All modifications of a node’s ref_count are performed by read-modify-write operations,
so every release-CAS is the head of a release sequence. Therefore, a synchronize-with
relation is established with any release-CAS that precedes the acquire-CAS in ref_count’s
modification order. So in this example the acquire-CAS by t1 synchronizes-with the
release-CAS by t2 (4.7).

t1 : n.ref_count.cmpxchg(4)
acq︸ ︷︷ ︸

decrement_refcnt

(4.5)

t2 : n.ref_count.cmpxchg(4)
rel︸ ︷︷ ︸

decrement_refcnt

(4.6)

t2: n.ref_count.cmpxchg
(4)
rel

mo−−−→ t1: n.ref_count.cmpxchg
(4)
rel =⇒

t2: n.ref_count.cmpxchg
(4)
rel

sw−−−→ t1: n.ref_count.cmpxchg(4)
acq

(4.7)

4.4.2 Hazard Pointers

The implementation of the hazard pointers scheme takes a single template parame-
ter Policy that controls how hazard pointers are allocated/deallocated and how the
threshold for the local retire list is calculated. The two implemented policies are
static_hazard_pointer_policy and dynamic_hazard_pointer_policy. Both policies are
explained in more detail in Section 4.4.2.2.

4.4.2.1 The enable_concurrent_ptr class

The enable_concurrent_ptr implementation for HPBR (shown in Listing 4.22) inherits
from deletable_object_impl but does not contain any other members that would set it
apart from the minimal definition.

Listing 4.22: hazard pointer’s enable_concurrent_ptr
1 template <class T, std::size_t N = 0, class Deleter = std::default_delete<T>>
2 class enable_concurrent_ptr : private detail::deletable_object_impl<T, Deleter>
3 {
4 public:
5 static constexpr std::size_t number_of_mark_bits = N;
6 protected:
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7 enable_concurrent_ptr() noexcept = default;
8 enable_concurrent_ptr(const enable_concurrent_ptr&) noexcept = default;
9 enable_concurrent_ptr(enable_concurrent_ptr&&) noexcept = default;

10 enable_concurrent_ptr& operator=(const enable_concurrent_ptr&) noexcept = default;
11 enable_concurrent_ptr& operator=(enable_concurrent_ptr&&) noexcept = default;
12 ~enable_concurrent_ptr() noexcept = default;
13 private:
14 friend detail::deletable_object_impl<T, Deleter>;
15
16 template <class, class>
17 friend class guard_ptr;
18 };

The scheme internally uses only references to the deletable_object base class, i.e., the
retire list is a linked list of deletable_object entries and also the hazard pointers store
references to the deletable_object base class. This is necessary to correctly protect
classes that use multiple inheritance. An instance of such a class can be referenced by
several pointers with different values, simply because the pointers refer to different types
(e.g., different base classes). It is therefore necessary to fall back to a common base class,
i.e., deletable_object.

4.4.2.2 The static_hazard_pointer_policy and
dynamic_hazard_pointer_policy classes

These policies are used to parameterize this reclamation scheme. They control how many
hazard pointers each thread can hold at the same time, how these hazard pointers are
managed and how the threshold for the number of retired nodes is calculated. The
static_hazard_pointer_policy class corresponds to the originally proposed scheme with
a fixed number of hazard pointers, while dynamic_hazard_pointer_policy corresponds
to the proposed extension that allows each thread to hold an arbitrary number of hazard
pointers. Both policies take three template parameters:

K the number of hazard pointers—the default number is 2.

A, B two constants that are used in the formula A ∗ numHPs() + B, where numHPs is a
function that returns the number of active hazard pointers, i.e., the total number
of hazard pointers that could potentially be used by the currently running threads
at this point in time. This formula is used to compute the threshold R for the
number of retired nodes in order to achieve amortized constant processing time for
reclamation. Formally this is written as R = H + Ω(H), where R is the threshold
and H is the maximum number of unreclaimable nodes (i.e., the number of active
hazard pointers). The default number for A is 2 and for B 100.

A policy needs to define:

• a method retired_nodes_threshold—this method shall calculate the threshold for
the number of retired nodes.
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• a method number_of_active_hazard_pointers—this method shall return the max-
imum number of hazard pointers that can be in active use at this time.

• a class thread_control_block

The thread_control_block class has to define the following methods:

• initialize

• abandon

• alloc_hazard_pointer

• release_hazard_pointer

• gather_protected_pointers

Every thread holds a local thread_data instance which contains a reference to its private
thread_control_block instance. At the same time all thread_controls_block instances
are registered in a global thread_block_list (see Section 4.3.1) so that they can be
traversed.

When a thread terminates, it cannot release its local thread_control_block in-
stance since it could be accessed by another thread that is currently traversing the
thread_block_list. Instead it calls abandon to mark the block as unused. abandon also
decrements the global number of active hazard pointers since the hazard pointers of this
block can no longer be used.

When a new thread is started, it first walks through the thread_block_list and tries
to adopt an abandoned block. Only if this fails, it creates a new thread_control_block
instance and registers it in the thread_block_list. For both, newly created and adopted
blocks, the thread then calls initialize, which increases the global number of active
hazard pointers and initializes the internal linked list of hazard pointers.

When a guard_ptr is created with a valid pointer, it allocates a hazard pointer from
the thread-local control block (i.e., reserves it for exclusive use by this guard_ptr) and
releases the hazard pointer once it gets reset. Therefore the hazard pointers can be
allocated and released in an arbitrary order. To avoid a linear search to find the next free
hazard pointer, unused hazard pointers are organized in a linked list in which every free
hazard pointer holds the address of the next free hazard pointer. In order to differentiate
these links to other hazard pointers from used hazard pointers, the pointer’s LSB is used
as mark bit. The head of this list (i.e., the pointer to the first free hazard pointer) is
stored in the thread-local thread_data instance. This allows very efficient allocation and
release of hazard pointers in an arbitrary order.

When a thread performs a scan, it traverses the global thread_block_list and calls
gather_protected_pointers for each active thread_control_block (i.e., blocks that are
not abandoned). gather_protected_pointers walks through all the hazard pointers of
the block, checks if the hazard pointer points to an object (i.e., the mark bit is not set)
and only then adds it to the list of protected objects.
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The static_hazard_pointer_policy and dynamic_hazard_pointer_policy classes
share a lot of code since the base functionality is the same for both. The difference
between the two policies is that static_hazard_pointer_policy only has a fixed size
array with K hazard pointers and it will throw a bad_hazard_pointer_alloc exception
when alloc_hazard_pointer is called and all K hazard pointers are already in use.

The dynamic_hazard_pointer_policy class also starts with a fixed size array with K
hazard pointers, but it dynamically allocates additional blocks with max(K, totalHPs/2)
additional hazard pointers where totalHPs is the total number of hazard pointers available
to this thread_control_block (i.e., K plus the sum of hazard pointers in dynamically
allocated blocks). These blocks are organized in a simple linked list so that they can be
traversed in gather_protected_pointers. This allows to dynamically grow the number
of hazard pointers. But since they have to stay available indefinitely, it is not possible to
shrink it.

4.4.2.3 The thread_data class

The thread_data class (see Listing 4.23) is a thread-local data structure that holds:

• the linked list of retired nodes,

• the size of the linked list, i.e., the number of retired nodes currently in the list,

• a reference to a thread_control_block; this reference is initialized lazily the first
time it is required, so that threads that do not use this scheme do not add to the
total number of active hazard pointers,

• a hint that is passed to thread_control_block’s allocate_hazard_pointer and
release_hazard_pointer methods to improve efficiency. For the two implemented
policies the hint is simply a pointer to the head of the linked list of unused hazard
pointers.

Listing 4.23: HPBR’s thread_data
1 template <typename Policy>
2 struct alignas(64) hazard_pointer<Policy>::thread_data :
3 detail::aligned_object<thread_data>
4 {
5 using HP = typename thread_control_block::hazard_pointer*;
6
7 thread_data();
8 ~thread_data();
9

10 HP alloc_hazard_pointer();
11 void release_hazard_pointer(HP& hp);
12
13 std::size_t add_retired_node(detail::deletable_object* p);
14 void scan():
15
16 private:
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17 void ensure_has_control_block();
18
19 detail::deletable_object* retire_list;
20 std::size_t number_of_retired_nodes;
21 typename thread_control_block::hint hint;
22
23 thread_control_block* control_block;
24 };

Both methods, allocate_hazard_pointer and release_hazard_pointer, ensure that a
thread_control_block has been allocated for this thread and simply forward to the
according methods of the thread_control_block instance.

The add_retired_node method adds the given node to the local retire_list, incre-
ments number_of_retired_nodes and returns the resulting number.

The scan method (shown in Listing 4.24) iterates over all entries in the
global_thread_block_list and gathers all the active hazard pointers of each thread
in a vector. The sequentially consistent fence in line 8 is required to establish the
necessary happens-before relations; this is described in more detail in Section 4.4.2.4.
The protected_pointers vector is then sorted and handed to reclaim_nodes.

Listing 4.24: HBR’s thread_data::scan
1 template <typename Policy>
2 void hazard_pointer<Policy>::thread_data::scan()
3 {
4 std::vector<const detail::deletable_object*> protected_pointers;
5 protected_pointers.reserve(Policy::number_of_active_hazard_pointers());
6
7 // (8) - this seq_cst-fence enforces a total order with the seq_cst-fence (4)
8 std::atomic_thread_fence(std::memory_order_seq_cst);
9

10 auto adopted_nodes = global_thread_block_list.adopt_abandoned_retired_nodes();
11
12 std::for_each(global_thread_block_list.begin(), global_thread_block_list.end(),
13 [&protected_pointers](const auto& entry)
14 {
15 if (entry.is_active())
16 entry.gather_protected_pointers(protected_pointers);
17 });
18
19 // (9) - this acquire-fence synchronizes-with the release-store (5)
20 std::atomic_thread_fence(std::memory_order_acquire);
21
22 std::sort(protected_pointers.begin(), protected_pointers.end());
23
24 auto list = retire_list;
25 retire_list = nullptr;
26 number_of_retired_nodes = 0;
27 reclaim_nodes(list, protected_pointers);
28 reclaim_nodes(adopted_nodes, protected_pointers);
29 }
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The reclaim_nodes method simply iterates over the given list and for each retired node
performs a binary search in the sorted protected_pointers vector to check whether this
node is protected by some thread. If that is the case, the node gets re-added to the
internal retire list. Otherwise it calls delete_self on the node and moves on. The same
concept is applied to the nodes that we may have adopted. Note that it is important
to call adopt_abandoned_retired_nodes before we gather the list of protected pointers
to avoid a race condition where we would try to reclaim a node that was added to the
abandoned retired nodes after we have gathered the protected pointers. The abandoned
node could be protected by a hazard pointer that set after we gathered the list of
protected pointers, but we would not recognize this and would therefore reclaim that
node while it is still used by some other thread.

4.4.2.4 The guard_ptr class

The guard_ptr class protects a shared object by ensuring that a globally visible hazard
pointer is referencing that object. Therefore the guard_ptr sets a hazard pointer for this
object when:

• the guard_ptr is constructed with a marked_ptr,

• the acquire or acquire_if_equal method is called to acquire a safe reference from
a concurrent_ptr,

• the guard_ptr gets copy constructed or copy assigned.

Move construction and move assignment simply move ownership of the hazard pointer
and clear the source guard_ptr.

A guard_ptr only allocates a hazard pointer when it is actually protecting an object.
Thus, default constructed guard_ptrs or instances that have been reset do not add to
the total number of used hazard pointers.

The reclaim method (shown in Listing 4.25) simply stores the deleter, adds the node
to the local retire-list and checks if the threshold for the maximum number of local retired
nodes is exceeded. If that is the case it calls scan, which gathers all active hazard pointers
of all threads and reclaims all nodes from the local retire-list that are not protected by
any hazard pointer.

Listing 4.25: HPBR’s guard_ptr::reclaim
1 template <typename Policy>
2 template <class T, class MarkedPtr>
3 void hazard_pointer<Policy>::guard_ptr<T, MarkedPtr>::
4 reclaim(Deleter d) noexcept
5 {
6 auto p = this->ptr.get();
7 reset();
8 p->set_deleter(std::move(d));
9 if (local_thread_data.add_retired_node(p) >= Policy::retired_nodes_threshold())

10 local_thread_data.scan();
11 }
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The acquire method (shown in Listing 4.26) allocates a hazard pointer if necessary, i.e.,
only if p is not null but actually points to a valid object, and if this guard_ptr instance
does not already have an allocated hazard pointer. It then stores the loaded value of p in
the hazard pointer and performs a reload of p to check whether it has changed in the
meantime.

Listing 4.26: HPBR’s guard_ptr::acquire
1 template <typename Policy>
2 template <class T, class MarkedPtr>
3 void hazard_pointer<Policy>::guard_ptr<T, MarkedPtr>::
4 acquire(concurrent_ptr<T>& p, std::memory_order order)
5 {
6 auto p1 = p.load(std::memory_order_relaxed);
7 if (p1 != nullptr && hp == nullptr)
8 hp = local_thread_data.alloc_hazard_pointer();
9

10 auto p2 = p1;
11 do
12 {
13 if (p2 == nullptr)
14 {
15 reset();
16 return;
17 }
18
19 p1 = p2;
20 hp->set_object(p1.get());
21 // (1) - this load operation potentially synchronizes-with any
22 // release operation on p.
23 p2 = p.load(order);
24 } while (p1.get() != p2.get());
25
26 this->ptr = p2;
27 }

When a guard_ptr gets reset, it calls release_hazard_pointer to return the hazard
pointer to the internal linked list of available hazard pointers. The new value that
resets the hazard pointer and signals that it does not protect a node is written using
release semantics. This is important to establish a happens-before relation with a thread
that tries to reclaim the previously protected node; the details of how this relation is
established and why this is necessary are explained in Section 4.4.2.6.

4.4.2.5 The region_guard class

HPBR does not use the concept of region_guards and therefore only defines an empty
dummy class.
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4.4.2.6 Correctness

Assume, without loss of generality, that thread t1 removes some node n from a data
structure by updating some pointer p. Before n can safely be reclaimed, t1 has to perform
a scan of all other hazard pointers to ensure that no other thread holds a reference to
n. To ensure that t1 “sees” all relevant hazard pointers it has to perform a sequentially
consistent atomic_thread_fence before it scans the threads (4.8).

When t2 tries to obtain a safe reference to p it calls guard_ptr.acquire, which inter-
nally sets the hazard pointer and performs a sequentially consistent atomic_thread_fence
(4.9)6.

t1 : p.storerel︸ ︷︷ ︸
remove(n)

sb−−→ fence(8)
sc

sb−−→ t2.hp.loadrlx
sb−−→ fence(9)

acq︸ ︷︷ ︸
scan

(4.8)

t2 : hp.storerlx
sb−−→ fence(4)

sc
sb−−→ p.load(1)

acq︸ ︷︷ ︸
guard_ptr.acquire

(4.9)

Since there is a single total order of all sequentially consistent operations, including the
fences in acquire (performed by t2) and in scan (performed by t1), and sequentially
consistent fences provide the additional properties described in Section 3.3, it follows
that either t1 sees the hazard pointer of t2 (4.10), or that t2 sees that updated value of p
(4.11).

t2: fence(4)
sc

sco−−−→ t1: fence(8)
sc =⇒

t2: hp.store
(3)
rlx

rf−−−→ t1: t2.hp.loadrlx

i.e., t1 “sees” the hazard pointer, t2 therefore has a safe reference to n

(4.10)

t1: fence(8)
sc

sco−−−→ t2: fence(4)
sc =⇒

t1: p.store
(3)
rel

rf−−−→ t2: p.load(1)
acq

i.e., t2 recognizes that p has changed

(4.11)

One might think that it would suffice to use memory_order_relaxed for the reload of p,
because the first load in guard_ptr.acquire is sequenced-before the sequentially consistent
fence in set_object, and the fence would therefore synchronize-with any release operation
on p. However, this is true only if the second load operations reads the exact same value
from the same write operation, i.e.:

t1: p.store(n)rel
...

t2: p.loadrlx fence(4)
sc p.load(1)

rlx

sb

rf
sw rf

sb sb

6Strictly speaking, guard_ptr.acquire calls the internal method set_object, which sets the hazard
pointer and performs the fence.
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But it could happen that the node referenced by p gets reclaimed before the hazard
pointer becomes globally visible and thus the node could already be reused, causing a
subsequent write to store the same value in p.

t1: p.store(n)rel reclaim and reuse n p.store(n)rel

t2: p.loadrlx fence(4)
sc p.load(1)

rlx

sw

sb sb

rf rf

sb sb

The thread t2 would not recognize this since the values read by the two load operations
are identical. From the perspective of the reclamation scheme this would not be a
problem, as it would still have correctly obtained a safe reference since the hazard pointer
contains the correct value. But it might be a problem from the perspective of the data
structure, as no synchronize-with relation would have been established—even if this
would be required by the data structure and the call to acquire would have used the
correct ordering.

What remains to be shown is that there exists a happens-before relation between the
reclaim operation and any changes made to the reclaimed node. Suppose that thread
t1 wants to reclaim a node n that was protected by t2. As already mentioned before,
the reset operation of a guard_ptr uses release semantics to return the hazard pointer
to the internal list (4.13). When t1 performs the scan operation we read all the hazard
pointers of all threads. If a hazard pointer does not protect a node we can ignore it,
but the important point is that we have read its value. Suppose that t1 “sees” the new
value of the hazard pointer, i.e., the node is no longer protected by t2 and can therefore
be reclaimed. After scanning all hazard pointers, t1 perform an acquire-fence (4.12).
Since the load operation during the scan read the value previously stored by t2, the fence
synchronizes-with that release-store (4.14). In case t2 already reused the hazard pointer,
we could read some newer value. But since the hazard pointers can only be changed
by the owning thread t2, the new value would be part of a release-sequence headed by
release-store that we are interested in. When t2 abandons its thread_control_block it
can be reused by some new thread. In this case the changes made by the new thread
would no longer be part of a release sequence headed by t2’s changes. In this situation
the required synchronize-with relation gets established via the thread_control_block’s
in_use flag. Thus, we have successfully establish the required happens-before relation
and the node can safely be reclaimed.

t1 : t2.hp.loadrlx
sb−−→ fence(9)

acq︸ ︷︷ ︸
scan

(4.12)

t2 : hp.store(5)
rel︸ ︷︷ ︸

guard_ptr.reset

(4.13)

t2: hp.store
(5)
rel[store

(3)
rlx, store(5)

rel]
rf−−−→ t1: t2.hp.loadrlx =⇒

t2: hp.store
(5)
rel

sw−−−→ t1: fence(9)
acq

(4.14)
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4.4.3 Epoch based reclamation

The implementation of the epoch based reclamation scheme takes a single template
parameter UpdateThreshold, which defines the number of critical region entries upon
which a thread tries to update the global epoch.

4.4.3.1 The enable_concurrent_ptr class

The enable_concurrent_ptr implementation for EBR is identical to that of HPBR (see
Section 4.4.2.1).

4.4.3.2 The thread_control_block class

Every thread that uses this scheme holds a reference to a thread_control_block instance.
The instances are all managed by the global_thread_block_list. It holds the following
members:

• is_in_critical_region – a flag that signals whether this thread is currently inside
a critical region.

• local_epoch – the epoch that this thread is currently observing (in case it is in a
critical region).

The thread_control_block class acts purely as container for the local_epoch and
is_in_critical_region members, which have to be accessible by other threads in order
to determine whether it is safe to update the global epoch.

4.4.3.3 The thread_data class

The thread_data class (see Listing 4.27) is a thread-local data structure that holds the
following data members:

• enter_count – is used to keep track of the number of nested entries.

• entries_since_update – is used to keep track of the number of entries since this
thread has last performed an epoch update.

• retire_lists[number_epochs] – the retire lists, one for each epoch.

• control_block – pointer to the thread-local thread_control_block instance. This
member is initialized lazily the first time it is required.

Listing 4.27: EBR’s thread_data
1 template <std::size_t UpdateThreshold>
2 struct epoch_based<UpdateThreshold>::thread_data
3 {
4 ~thread_data();
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5 void enter_critical();
6 void leave_critical();
7 void add_retired_node(detail::deletable_object* p);
8
9 private:

10 void ensure_has_control_block();
11
12 void do_enter_critical();
13 void do_leave_critical();
14
15 void add_retired_node(detail::deletable_object* p, size_t epoch);
16
17 bool try_update_epoch(unsigned curr_epoch);
18 void adopt_orphans();
19
20 unsigned enter_count = 0;
21 unsigned entries_since_update = 0;
22 thread_control_block* control_block = nullptr;
23 std::array<detail::deletable_object*, number_epochs> retire_lists = {};
24 };

The enter_critical method increments enter_count and if its value was zero it calls
do_enter_critical. The leave_critical and do_leave_critical methods are the re-
spective counterparts. enter_critical and leave_critical are called by the guard_ptr
when it acquires a pointer respectively when it gets reset. This makes sure that the
critical region is entered when the first guard_ptr is created and only left when the last
guard_ptr has been destroyed, i.e., a critical region starts with the creation of the first
guard_ptr, and its scope is equivalent to the union of scopes of all guard_ptrs created
inside of it.

When the thread terminates and the thread_data instance gets destroyed, there
is a fair chance that the retire_lists still contain unreclaimed nodes. Since this
thread is already terminating, we have to defer reclamation of these nodes to some
other thread. For this we use a special orphan node. The orphan struct (shown in
Listing 4.28) is a helper class that stores the thread’s retire_lists and a target_epoch,
which defines the epoch when it is safe to reclaim all the items from the retire_lists.
The thread_data destructor creates such an orphan, adds it to the list of abandoned
nodes in global_thread_block_list and releases the thread’s thread_control_block.
This orphan node will later be picked up by some other thread when it adopts all the
abandoned nodes.

Listing 4.28: orphan helper class
1 template <unsigned Epochs>
2 struct orphan : detail::deletable_object_impl<orphan<Epochs>>
3 {
4 orphan(unsigned target_epoch,
5 std::array<detail::deletable_object*, Epochs> &retire_lists):
6 target_epoch(target_epoch),
7 retire_lists(retire_lists)
8 {}
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9
10 ~orphan()
11 {
12 for (auto p: retire_lists)
13 detail::delete_objects(p);
14 }
15
16 unsigned target_epoch;
17 std::array<detail::deletable_object*, Epochs> retire_lists;
18 };

The adopt_orphans method tries to adopt any orphans from the global abandoned nodes
list. Since the orphan class inherits from deletable_object, any instance can simply
be added to the appropriate retire list, which is defined by the instance’s target_epoch.
Thus, when the orphan gets reclaimed, all the objects in the contained retire_lists
get reclaimed as well. A thread calls adopt_orphans anytime it successfully updated the
global epoch.

The do_enter_critical method (shown in Listing 4.29) starts by setting the
is_in_critical_region flag before it loads the global_epoch. If the current local_epoch
is different from the global_epoch the thread is observing a new epoch, so it can reclaim
all objects in the according retire_list, set local_epoch to the new value and reset
entries_since_update to zero. Otherwise it increases entries_since_update, and if the
new value reaches UpdateThreshold, it resets entries_since_update to zero and calls
try_update_epoch. Getting true from the call means that the global_epoch has been
updated, so the thread is already observing this new epoch and it can thus also reclaim
all objects in the according retire_list and set the local_epoch to the new value.

Listing 4.29: EBR’s do_enter_critical
1 template <std::size_t UpdateThreshold>
2 void epoch_based<UpdateThreshold>::thread_data::do_enter_critical()
3 {
4 ensure_has_control_block();
5
6 control_block->is_in_critical_region.store(true, std::memory_order_relaxed);
7 // (3) - this seq_cst-fence enforces a total order with itself
8 std::atomic_thread_fence(std::memory_order_seq_cst);
9

10 // (4) - this acquire-load synchronizes-with the release-CAS (7)
11 auto epoch = global_epoch.load(std::memory_order_acquire);
12 if (control_block->local_epoch.load(std::memory_order_relaxed) != epoch)
13 {
14 entries_since_update = 0;
15 }
16 else if (entries_since_update++ == UpdateThreshold)
17 {
18 entries_since_update = 0;
19 const auto new_epoch = (epoch + 1) % number_epochs;
20 if (!try_update_epoch(epoch, new_epoch))
21 return;
22
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23 epoch = new_epoch;
24 }
25 else
26 return;
27
28 // We either just updated the global_epoch or we are observing a new epoch from
29 // some other thread. Either way, we can reclaim all the objects from the old
30 // ’incarnation’ of this epoch.
31
32 control_block->local_epoch.store(epoch, std::memory_order_relaxed);
33 detail::delete_objects(retire_lists[epoch]);
34 }

The try_update_epoch method (shown in Listing 4.30) checks whether any of the
thread_control_block instances in the global thread_block_list (excluding its own
instance) is currently inside a critical region (i.e., it has the is_in_critical_region flag
set) and has not yet observed the current global_epoch. If that is the case there is a thread
lagging behind, so the global_epoch cannot be updated and the function therefore returns
false. Otherwise it performs a CAS operation on global_epoch, trying to set it to the
next value. If this succeeds, the thread tries to adopt any potential orphans. Otherwise, a
failing CAS operation simply means that another thread was faster, but the global_epoch
was still updated. Either way, we have to return true to signal the successful update
to do_enter_critical. However, we have to use compare_exchange_strong instead of
compare_exchange_weak to avoid spurious fails as they would spoil this guarantee.

Listing 4.30: EBR’s try_update_epoch
1 template <std::size_t UpdateThreshold>
2 bool epoch_based<UpdateThreshold>::thread_data::
3 try_update_epoch(unsigned curr_epoch, unsigned new_epoch)
4 {
5 const auto old_epoch = (curr_epoch + number_epochs - 1) % number_epochs;
6 auto prevents_update = [old_epoch](const thread_control_block& data)
7 {
8 return data.is_in_critical_region.load(std::memory_order_relaxed) &&
9 data.local_epoch.load(std::memory_order_relaxed) == old_epoch;

10 };
11
12 // If any thread hasn’t advanced to the current epoch, abort the attempt.
13 auto can_update = !std::any_of(global_thread_block_list.begin(),
14 global_thread_block_list.end(),
15 prevents_update);
16 if (!can_update)
17 return false;
18
19 if (global_epoch.load(std::memory_order_relaxed) == curr_epoch)
20 {
21 // (6) - this acquire-fence synchronizes-with the release-store (5)
22 std::atomic_thread_fence(std::memory_order_acquire);
23
24 // (7) - this release-CAS synchronizes-with the acquire-load (4)
25 bool success = global_epoch.compare_exchange_strong(curr_epoch, new_epoch,
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26 std::memory_order_release,
27 std::memory_order_relaxed);
28 if (success)
29 adopt_orphans();
30 }
31
32 // Return true regardless of whether the CAS operation was successful or not. It is
33 // not import that THIS thread updated the epoch, but it got updated in any case.
34 return true;
35 }

4.4.3.4 The guard_ptr class

The guard_ptr protects a shared object by ensuring that the is_in_critical_region is
set. For this the guard_ptr calls enter_critical when:

• the guard_ptr is constructed with a marked_ptr

• the acquire or acquire_if_equal method is called to acquire a safe reference from
a concurrent_ptr

• the guard_ptr gets copy constructed or copy assigned

The counterpart leave_critical is called when a non-null guard_ptr gets reset. Move
construction and move assignment simply move ownership of the referenced object and
clear the internal member of the source guard_ptr.

If acquire or acquire_if_equal have already called enter_critical, but the subse-
quent load of the specified pointer returns null, then the guard_ptr immediately calls
leave_critical. This ensures that only a non-null guard_ptr adds to the total number
of enter_count.

The reclaim method simply adds the node to the thread_control_block’s current
retire_list and resets the guard_ptr.

4.4.3.5 The region_guard class

EBR does not use the concept of region_guard’s and therefore only defines an empty
dummy class.

4.4.3.6 Correctness

Assume, without loss of generality, that thread t1 is currently observing epoch 0 when
it removes the node n from some data structure. The removed node is therefore added
to retire_list[0] and all the nodes in this retire list can be reclaimed as soon as the
thread observes that the global epoch has advanced by three, i.e., due to the wrap-around
it is again 0.
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t1 modification_order(global_epoch)

enter_critical global_epoch.cmpxchg(0)rlx

remove(n) global_epoch.cmpxchg(1)rlx

... global_epoch.cmpxchg(2)rlx

enter_critical global_epoch.cmpxchg(0)rlx

reclaim(n)

sb

sb

sb

sb

mo

mo

mo

rf

rf

rf

rf

Note that t1 has to observe at least one of the two intermediate epochs 1 or 2. Otherwise
it would not be able to recognize that this is a re-occurrence of epoch 0 and therefore the
nodes in retire_list[0] could not be reclaimed. Assume, without loss of generality, that
t1 performs the last update of global_epoch that ultimately leads to the reclamation of n.
It follows that the acquire call that leads to the update of global_epoch is sequenced-after
the remove operation (4.15).

A thread t2 that tries to acquire a safe reference to n sets its critical_region flag
and performs a sequentially consistent fence before it loads p’s value (4.16).

t1 : p.storerel︸ ︷︷ ︸
remove(n)

sb−−→ critical_region.storerlx
sb−−→ fence(3)

sc
sb−−→ t2.critical_region.loadrlx︸ ︷︷ ︸

try_update_epoch︸ ︷︷ ︸
guard_ptr.acquire

(4.15)

t2 : critical_region.storerlx
sb−−→ fence(3)

sc
sb−−→ p.load(1)

acq︸ ︷︷ ︸
guard_ptr.acquire

(4.16)

And since the sequentially consistent fences enforce a total order, there are only two
possible scenarios: either t1 recognizes that t2 is in a critical region, therefore the global
epoch cannot be updated preventing the removed node from being reclaimed (4.17), or t2
reads the new value of p and the removed node can therefore safely be reclaimed (4.18).

t2: fence(3)
sc

sco−−−→ t1: fence(3)
sc =⇒

t2: critical_region.storerlx
rf−−−→ t1: t2.critical_region.loadrlx

i.e, t1 “sees” that t2 is in a critical region

(4.17)

t1: fence(3)
sc

sco−−−→ t2: fence(3)
sc =⇒

t1: p.storerel
rf−−−→ t2: p.load(1)

acq

i.e., t2 reads the new value of p

(4.18)
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What remains to be shown is that there exists a happens-before relation between the
reclaim operation and any changes made to the reclaimed node. Suppose that thread
t1 wants to reclaim a node n that was previously protected by t2. In order for t1 to
be able to reclaim n, it must observe a later epoch than t2 when it protected n. The
corresponding try_update_epoch that advances the global_epoch is performed by thread
t3.

The leave_critical operation uses release semantics to set the in_critical_region
flag to false (4.20). When t3 performs the try_update_epoch operation, it reads all the
critical_region flags of all threads. If a thread is not in a critical we can ignore it, but
the important point is that we have read the flag. Suppose that t3 “sees” that t2’s flag
is set to false. After scanning all threads, t3 performs an acquire-fence followed by the
release-CAS that updates the global epoch. Since the load operation during the scan read
the value previously stored by t2, the fence synchronizes-with that release-store (4.22). In
case the load operation during the scan reads a newer value, that value would be part of
a release-sequence headed by the release-store, so we still get the same synchronize-with
relation.

When t1 enters its critical region it performs an acquire-load on global_epoch (4.19).
If this load returns the new value written by the t3 (or some newer value that would be
part of a release-sequence headed t3’s release-CAS), the acquire-load synchronizes-with
the release-CAS (4.23). Therefore it follows that the reset operation by t2 happens-before
the reclaim operation by t1 (4.24).

t1 : global_epoch.load(4)
acq︸ ︷︷ ︸

enter_critical

(4.19)

t2 : critical_region.store(5)
rel︸ ︷︷ ︸

guard_ptr.reset

(4.20)

t3 : t2.critical_region.loadrlx
sb−−→ fence(6)

acq
sb−−→ global_epoch.cmpxchg(7)

rel︸ ︷︷ ︸
try_update_epoch

(4.21)

S1 = t2: critical_region.store
(5)
rel

rf−−−→ t3: t2.critical_region.loadrlx =⇒

t2: critical_region.store
(5)
rel

sw−−−→ t3: fence(6)
acq

(4.22)

S2 = t3: global_epoch.cmpxchg
(7)
rel[cmpxchg

(7)
rel]

rf−−−→ t1: global_epoch.load(4)
acq =⇒

t3: global_epoch.cmpxchg
(7)
rel

sw−−−→ t1: global_epoch.load(4)
acq

(4.23)

S1 ∧ S2 =⇒

t2: critical_region.store
(5)
rel

hb−−−→ t1: global_epoch.load(4)
acq

(4.24)
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4.4.4 New epoch based reclamation

As described in Section 2.8 this scheme is an extension to EBR that allows to expand a
critical region over several operations in order to distribute the overhead for the region
entry. Therefore, the implementation of this scheme is in large parts identical to the
EBR implementation; The enable_concurrent_ptr and guard_ptr classes are exactly
the same, thread_control_block has a few adaptations and region_guard is no longer
an empty dummy class.

4.4.4.1 The thread_data class

The thread_data class (shown in Listing 4.31) is also very similar to that of EBR, with
only a few adaptations.

• region_entries – is used to keep track of the number of region entries

• nested_critical_entries – is used to keep track of the number of critical entries
nested in the current region.

• critical_entries_since_update – is used to keep track of the number of critical
entries since this thread has last performed an epoch update.

• retire_lists[number_epochs] – the retire lists, one for each epoch.

• control_block – pointer to the thread-local thread_control_block instance. This
member is initialized lazily the first time it is required.

Listing 4.31: NEBR’s thread_data
1 template <std::size_t UpdateThreshold>
2 struct new_epoch_based<UpdateThreshold>::thread_data
3 {
4 ~thread_data();
5
6 void enter_region();
7 void leave_region();
8
9 void enter_critical();

10 void leave_critical();
11
12 void add_retired_node(detail::deletable_object* p);
13
14 private:
15 void ensure_has_control_block();
16 void do_enter_critical();
17 void add_retired_node(detail::deletable_object* p, size_t epoch);
18 bool try_update_epoch(unsigned curr_epoch);
19 void adopt_orphans();
20
21 unsigned critical_entries_since_update = 0;
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22 unsigned nested_critical_entries = 0;
23 unsigned region_entries = 0;
24 thread_control_block* control_block = nullptr;
25 std::array<detail::deletable_object*, number_epochs> retire_lists = {};
26 };

In contrast to EBR, the NEBR implementation introduces an additional tracking level:
Region entries (for both, region_guards and guar_ptrs) and critical entries (for guard_ptr
s only).

• The enter_region method increments region_entries and, if it was zero, sets the
is_in_critical_region flag.

• The leave_region method decrements region_entries and, if the new value is
zero, clears the is_in_critical_region flag.

• The enter_critical method first calls enter_region (every guard_ptr implicitly
creates a new region unless another guard_ptr or region_guard has already cre-
ated one), then it increments nested_critical_entries and, if it was zero, calls
do_enter_critical, which is basically identical to that of EBR.

• The leave_critical method first decrements nested_critical_entries and then
calls leave_region.

4.4.4.2 The region_guard class

This is the first scheme that uses the concept of region_guards. The idea is to amortize
the cost of the sequentially consistent fence on setting the is_in_critical_region flag
over a number of operations.

The region_guard implementation is straight forward. Upon construction it calls
enter_region on the thread-local thread_data instance and upon destruction it calls
leave_critical. Since the implementation tracks the number region/critical entries,
region_guards and guard_ptrs can be arbitrarily mixed and nested.

A critical region thus starts with the creation of the first guard_ptr or region_guard,
and its scope is equivalent to the union of scopes of all guard_ptr and region_guard
instances created inside of it.

4.4.4.3 Correctness

The correctness argument for this reclamation scheme is essentially the same as for EBR
(see Section 4.4.3.6).

4.4.5 Quiescent state based reclamation

The quiescent_state_based implementation is very similar to that of new_epoch_based.
The fuzzy barrier is implemented based on the same epoch concept, i.e., the barrier is
entered only after all threads have observed the current epoch.
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The main difference to EBR/NEBR is that the concept of critical regions is removed.
The global epoch only gets updated when all threads have gone through at least one
quiescent state. Conceptually this can be seen as if any thread that holds an entry in the
global thread_block_list is considered to be inside a critical region the whole time. A
thread would go through a quiescent state once the last guard_ptr or region_guard gets
destroyed, i.e., the thread is in a quiescent state while the destructor is executing. Once
the destructor returns, the thread is again considered to be inside a critical region, even
though no guard_ptr or region_guard exists. That is why the implementation internally
still uses the enter_region and leave_region methods as in NEBR to track the number
of region_entries caused by any guard_ptr or region_guard instances.

4.4.5.1 The thread_data class

The thread_data class (shown in Listing 4.32) is very similar to that of NEBR, with
only a few adaptations. The enter_critical and leave_critical methods together with
their counters are removed and do_enter_critical is replaced by the quiescent_state
method, which is called from leave_region once region_entries drops to zero.

Listing 4.32: QSBR’s thread_data
1 struct quiescent_state_based::thread_data
2 {
3 ~thread_data();
4 void enter_region();
5 void leave_region();
6 void add_retired_node(detail::deletable_object* p);
7
8 private:
9 void ensure_has_control_block();

10 void quiescent_state();
11 void add_retired_node(detail::deletable_object* p, size_t epoch);
12 bool try_update_epoch(unsigned& curr_epoch);
13 void adopt_orphans();
14
15 unsigned region_entries = 0;
16 thread_control_block* control_block = nullptr;
17 std::array<detail::deletable_object*, number_epochs> retire_lists = {};
18 };

While EBR and NEBR use expensive sequentially consistent fences, the QSBR imple-
mentation gets away with only acquire/release semantic. The adapted try_update_epoch
implementation is shown in Listing 4.33. The most important change is the additional
acquire-atomic_thread_fence that is required to synchronize-with any release store to
local_epoch. The details of how this ensures the required happens-before relations are
described in Section 4.4.5.6

Listing 4.33: QSBR’s try_update_epoch
1 bool quiescent_state_based::thread_data::
2 try_update_epoch(unsigned curr_epoch, unsigned new_epoch)
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3 {
4 auto old_epoch = (curr_epoch + number_epochs - 1) % number_epochs;
5 auto prevents_update = [old_epoch](const thread_control_block& data)
6 {
7 return data.is_active() &&
8 data.local_epoch.load(std::memory_order_relaxed) == old_epoch;
9 };

10
11 // If any thread has not advanced to the current epoch, abort the attempt.
12 bool can_update = !std::any_of(global_thread_block_list.begin(),
13 global_thread_block_list.end(),
14 prevents_update);
15 if (!can_update)
16 return false;
17
18 if (global_epoch.load(std::memory_order_relaxed) == curr_epoch)
19 {
20 // (4) - this acquire-fence synchronizes-with the release-store (3)
21 std::atomic_thread_fence(std::memory_order_acquire);
22
23 // (5) - this acq_rel-CAS synchronizes-with the acquire-load (2)
24 // and the acq_rel-CAS (1)
25 bool success = global_epoch.compare_exchange_strong(curr_epoch, new_epoch,
26 std::memory_order_acq_rel,
27 std::memory_order_relaxed);
28 if (success)
29 adopt_orphans();
30 }
31
32 // return true regardless of whether the CAS operation was successful or not
33 // it is not import that THIS thread updated the epoch, but it got updated in any

case
34 return true;
35 }

4.4.5.2 The enable_concurrent_ptr class

The enable_concurrent_ptr implementation for QSBR is identical to that of HPBR (see
Section 4.4.2.1).

4.4.5.3 The thread_control_block class

The thread_control_block for QSBR is trivial as it only contains a single data member
for the thread’s local_epoch:

1 struct quiescent_state_based::thread_control_block :
2 detail::thread_block_list<thread_control_block>::entry
3 {
4 std::atomic<unsigned> local_epoch;
5 };
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4.4.5.4 The guard_ptr class

The guard_ptr implementation of QSBR is essentially identical to that of EBR (see
Section 4.4.3.4).

4.4.5.5 The region_guard class

The region_guard implementation of QSBR is essentially identical to that of NEBR (see
Section 4.4.4.2).

4.4.5.6 Correctness

Assume, without loss of generality, that thread t1 is removing a node n from some
data structure and putting it on a local retire_list. In order to do this, t1 has
to have a guard_ptr instance that protects n. The retire_list containing n can be
reclaimed once the global_epoch has advanced three times, but in order to advance the
global_epoch, every thread must have observed the then current epoch, i.e., every thread,
including t1, must have gone through at least one quiescent state before the global_epoch
can be advanced. When a thread observes a new epoch in quiescent_state, it uses
memory_order_acquire to load the new value of global_epoch and announces this by
storing it in local_epoch using memory_order_release (4.25).

Assume that thread t2 is trying to advance global_epoch. It scans all threads to
check whether they have already observed the current epoch by reading local_epoch
from the threads’ respective thread_control_block. If this is not the case the attempt
fails. Otherwise, the thread performs an acquire-fence and, since all the local_epoch
reads are sequenced-before the fence (4.26) and since the reads returned the current
epoch, the fence synchronizes-with the respective local_epoch release-store operations
(4.28).

In the next step t2 updates global_epoch using a compare_exchange_strong opera-
tion7 with memory_order_acq_rel (4.26). So when thread t3 observes the new epoch and
performs an acquire-load on global_epoch in quiescent_state (4.27), it synchronizes-
with t2’s acq_rel-CAS operation (4.29), and due to the transitivity of the happens-before
relation this ensures that t1’s store happens-before t3’s load on p (4.30).

S1 = t1 : p.storerel︸ ︷︷ ︸
remove(n)

sb−−→ local_epoch.store(3)
rel︸ ︷︷ ︸

quiescent_state

(4.25)

S2 = t2 : tx.local_epoch.loadrlx
sb−−→ fence(4)

acq
sb−−→ global_epoch.cmpxchg_strong(5)

ar,rlx︸ ︷︷ ︸
try_update_epoch

(4.26)

S3 = t3 : global_epoch.load(2)
acq︸ ︷︷ ︸

quiescent_state

sb−−→ p.load(6)
acq︸ ︷︷ ︸

guard_ptr.acquire

(4.27)

7In this case a compare_exchange_strong operation is necessary, since it is not part of a loop and
we must therefore avoid spurious failures.
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S4 = t1: local_epoch.store
(3)
rel︸ ︷︷ ︸

quiescent_state

rf−−−→ t2 : tx.local_epoch.loadrlx
sb−−→ t2: fence(4)

acq︸ ︷︷ ︸
try_update_epoch

=⇒

t1: local_epoch.store
(3)
rel

sw−−−→ t2: fence(4)
acq

(4.28)

S5 = t2: global_epoch.cmpxchg_strong
(5)
ar,rlx︸ ︷︷ ︸

try_update_epoch

rf−−−→ t3: global_epoch.load(2)
acq︸ ︷︷ ︸

quiescent_state

=⇒

t2: global_epoch.cmpxchg_strong
(5)
ar,rlx

sw−−−→ t3: global_epoch.load(2)
acq

(4.29)

S6 = S1 ∧ S2 ∧ S3 ∧ S4 ∧ S5 =⇒

t1: p.storerel
hb−−−→ t2: p.load(1)

acq

(4.30)

It is important to note that this argument implies that there exists a happens-before
relation between the reclaim operation and any changes made to the reclaimed node.

However, one problem remains to be solved: In HPBR, EBR and NEBR the sequen-
tially consistent fences implicitly ensure that newly added threads are recognized and
therefore also considered when checking the currently observed epochs. As this scheme
does not use costly sequentially consistent operations, it still has to be ensured that newly
added threads are correctly considered. This means that we have to show that either the
update of p happens-before the update of the thread_block_list or vice versa.

Since we want to completely avoid sequentially consistent operations, we use the
global_epoch to synchronize all the threads. The ensure_has_control_block method
(shown in Listing 4.34) reads the current global_epoch, stores it in local_epoch and
attempts a CAS operation with the same value using memory_order_acq_rel.

Listing 4.34: QSBR’s ensure_has_control_block
1 void quiescent_state_based::thread_data::ensure_has_control_block()
2 {
3 if (control_block == nullptr)
4 {
5 control_block = global_thread_block_list.acquire_entry();
6 auto epoch = global_epoch.load(std::memory_order_relaxed);
7 do {
8 control_block->local_epoch.store(epoch, std::memory_order_relaxed);
9

10 // (1) - this acq_rel-CAS synchronizes with the acquire-loads (todo)
11 // and the acq_rel-CAS (todo)
12 } while (!global_epoch.compare_exchange_weak(epoch, epoch,
13 std::memory_order_acq_rel,
14 std::memory_order_relaxed));
15 }
16 }

We do not actually want to change the global_epoch, thus we are writing the same
value we just read, but we want to perform a release-write. As mentioned in Section 3.3,
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read-modify-write operations always read the last value in the modification order. It
thus follows that either the CAS in ensure_has_control_block synchronizes-with the
CAS in try_update_epoch (4.32), or the other way round (4.33).

t1: local_epoch.storerlx
sb−−→ global_epoch.cmpxchg_weak(1)

ar,rlx︸ ︷︷ ︸
ensure_has_control_block

sb−−→ p.loadacq (4.31)

t1: global_epoch.cmpxchg_weak
(1)
ar,rlx︸ ︷︷ ︸

ensure_has_control_block

mo−−−→ t2: global_epoch.cmpxchg_strong
(5)
ar,rlx︸ ︷︷ ︸

try_update_epoch

=⇒

t1: global_epoch.cmpxchg_weak
(1)
ar,rlx

rf−−−→ t2: global_epoch.cmpxchg_strong
(5)
ar,rlx =⇒

t1: global_epoch.cmpxchg_weak
(1)
ar,rlx

sw−−−→ t2: global_epoch.cmpxchg_strong
(5)
ar,rlx

(4.32)

t2: global_epoch.cmpxchg_strong
(5)
ar,rlx︸ ︷︷ ︸

try_update_epoch

mo−−−→ t1: global_epoch.cmpxchg_weak
(1)
ar,rlx︸ ︷︷ ︸

ensure_has_control_block

=⇒

t2: global_epoch.cmpxchg_strong
(5)
ar,rlx

rf−−−→ t1: global_epoch.cmpxchg_weak
(1)
ar,rlx =⇒

t2: global_epoch.cmpxchg_strong
(5)
ar,rlx

sw−−−→ t1: global_epoch.cmpxchg_weak
(1)
ar,rlx

(4.33)

So there is either a happens-before relation between the update to p and a potential read
of p by the new thread, or between the CAS on global_epoch by the new thread and
the CAS in try_update_epoch, which itself happens-before the reclamation of p. It is
therefore guaranteed that the new thread is recognized and considered when checking
the observed epochs.

4.4.6 Stamp-it

As described in Section 2.17, this scheme requires a data structure that efficiently supports
the following operations:

• Add an element and assign a stamp to it; stamps have to be strong monotonically
increasing.

• Remove a specific element from its current position and return true if this element
was the one with the lowest stamp at that point in time.

• Get the highest stamp assigned to an element so far, i.e., the last stamp that has
been assigned to an element.

• Get the lowest stamp of all elements currently in the data structure.
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My implementation of this data structure is called thread_order_queue8 and is built on
the ideas of the lock-free doubly-linked list by Sundell and Tsigas [ST05]. It requires
two static dummy nodes, head and tail, which never get removed and are also used to
manage the highest and lowest stamp values; the highest stamp is stored in head and the
lowest one in tail.

To insert or delete a node from the data structure one has to update the respective
set of prev and next pointers. These have to be changed consistently, but not necessarily
all at once. The solution proposed by Sundell and Tsigas is to treat the doubly-linked
list as a singly-linked list with auxiliary information in the prev pointers, with the next
pointers being updated before the prev pointers. Thus, the next pointers always form a
consistent singly-linked list, but the prev pointers only give hints for where to find the
previous node. The implementation is described in more detail in Section 4.4.6.5

A well known problem for non-blocking implementations based on singly-linked lists,
are insert operations that conflict with concurrent delete operations, i.e., the thread
performing the insert tries to update the next pointer of a node that is currently getting
deleted by another thread. Harris solved this problem [Har01] by introducing a deletion
mark in the pointer’s LSB. Before removing a node from the list, the deletion mark has
to be set causing all CAS operations to fail that attempt to update the next pointer as
part of a concurrent insert operation. For the doubly-linked list, the same concept has to
be applied for both pointers, next and prev.

Every thread has a single thread_control_block instance acting as a node that can
be inserted and removed in the thread_order_queue. Since these instances are “reused”,
special care has to be taken regarding the ABA problem. Since next and prev are already
marked_ptrs (for the deletion mark), I decided to spare a few more bits for a version tag,
i.e., some of the lower bits are used to store a tag that gets incremented with every change
to the pointer value. This solution to the ABA problem has already been described
in [IBM83]. Instead of using a second variable for the tag and updating both, pointer
and tag, atomically with a DWCAS9 operation, I simply squeeze both values into a single
pointer. However, this is not a definite solution since the tag value can wrap around,
leaving the theoretical possibility that a pointer could have been updated between a read
and a subsequent successful CAS operation. But by using enough bits for the tag value
we can reduce the probability on such an incorrect update to a negligible level, so one
can consider it to be practically impossible10. In order to ensure that the lower bits are
actually unused and the tag does not interfere with the pointer value the nodes have to
be allocated at properly aligned addresses.

8The name derives from the fact that the order of nodes in the queue reflects the order in which the
threads have entered their respective critical region.

9DWCAS is a double-word CAS operation that atomically compares and updates two consecutive
words, while DCAS/2CAS usually refer to an operation that atomically updates two independent words.

10Assume that a pointer p has a tag consisting of n bits and that with every update of p the tag
value would be incremented. Suppose a thread t performs a load on p followed by an update of p using a
CAS operation. For an “incorrect” update it would be necessary that between the load and the CAS
operations other threads would have to perform exactly a multiple of 2n operations on p, in order to
produce a wrap-around that results in the exact same tag value that p had when t performed the load;
otherwise the CAS operation would fail. Obviously a higher value of n reduces this risk considerably.
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Originally I used the 16 lowest bits, where the LSB is the mark bit and the remaining
15 bits were used for the version tag—I assumed this to be more than enough to reliably
prevent any ABA problem. But during extensive stress tests of the data structure using
the GuardPtr benchmark (see Section 4.6.1) occasionally weird errors occurred or some
assertions would hit, suggesting that the data structure was in a state that was supposed
to be impossible. This happened repeatedly when running the GuardPtr benchmark at
full load after a runtime of about 10-15 hours.

In order to verify whether these errors were actually caused by undetected ABA
situations I increased the number of bits for the version tag to 21 and added additional
assertions after every failed CAS operation, checking whether the CAS would have also
failed with a tag with only 15 bits. In several subsequent test runs, the new assertion was
hit after a runtime of 10-15 hours, but no errors occurred nor did any other assertions
fire, thus confirming that those errors were indeed caused by undetected ABA situations.
Increasing the number of bits in the assertion to 16 increased the average runtime until the
first assertion hit to about 20-30 hours. After another increase to 17 bits the benchmark
ran without any problems for more than 50 hours in several test runs. These experiments
show that the probability of an undetected ABA error is roughly reduced by half with
every additional bit spent for the version tag. In the end I decided to use 17 bits as the
new default value for the version tag. However, one should consider that these problems
only occurred in a stress test with the worst case scenario, running for long time. In a
more realistic scenario, where changes to the data structure occur much less frequently, it
would be highly unlikely to run into this issue, even with less than the 17 bits used now.

In the other chapters the term “node” was used to denote some piece of memory that
was managed by the reclamation scheme. However, with the thread_order_queue Stamp-
it has an internal data structure that also uses some “nodes”. In order to avoid confusion
I will refer to those internal nodes as blocks (since they are thread_control_block
instances).

4.4.6.1 The deletable_object_with_stamp class

All the other schemes use deletable_object as base class for enable_concurrent_ptr
as they have no special requirements. In case of Stamp-it, each node has to store the
current stamp at the time it is marked for reclamation and we have to be able to access
this stamp value later when trying to finally reclaim the node. Since the retire-lists only
store pointers to the base class (and we do not care about the concrete type), the stamp
value therefore has to be a member of the base class.

In addition the deletable_object_with_stamp class contains a next_chunk pointer
that is used to connect chunks of retired nodes in the global retire-list. Such a “chunk”
is a sorted list of nodes, linked by the next pointer. The global retire-list is therefore a
list of chunks, linked by the next_chunk pointer of each lists head node. The head of this
global retire-list is managed by the thread_order_queue.

The complete definition of the class can be seen in Listing 4.35.
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Listing 4.35: Stamp-it’s deletable_object_with_stamp
1 struct deletable_object_with_stamp
2 {
3 virtual void delete_self() = 0;
4 deletable_object_with_stamp* next = nullptr;
5 deletable_object_with_stamp* next_chunk = nullptr;
6 protected:
7 virtual ~deletable_object_with_stamp() = default;
8 private:
9 stamp_t stamp;

10 friend class stamp_it;
11 };

4.4.6.2 The enable_concurrent_ptr class

The enable_concurrent_ptr implementation for Stamp-it (see Listing 4.36) is almost iden-
tical to that of HPBR and EBR. The only difference is that deletable_object_with_stamp
is used as base class for deletable_object_impl.

Listing 4.36: Stamp-it’s enable_concurrent_ptr
1 template <class T, std::size_t N = 0, class Deleter = std::default_delete<T>>
2 class enable_concurrent_ptr :
3 private detail::deletable_object_impl<T, Deleter, deletable_object_with_stamp>
4 {
5 public:
6 static constexpr std::size_t number_of_mark_bits = N;
7 protected:
8 enable_concurrent_ptr() noexcept = default;
9 enable_concurrent_ptr(const enable_concurrent_ptr&) noexcept = default;

10 enable_concurrent_ptr(enable_concurrent_ptr&&) noexcept = default;
11 enable_concurrent_ptr& operator=(const enable_concurrent_ptr&) noexcept = default;
12 enable_concurrent_ptr& operator=(enable_concurrent_ptr&&) noexcept = default;
13 ~enable_concurrent_ptr() noexcept = default;
14 private:
15 friend detail::deletable_object_impl<T, Deleter, deletable_object_with_stamp>;
16
17 template <class, class>
18 friend class guard_ptr;
19 };

4.4.6.3 The thread_data class

The thread_data class (see Listing 4.37) is very similar to that of QSBR and NEBR. It
defines the usual methods to enter or leave critical regions and to add a retired node to
the internal retire-list.

Listing 4.37: Stamp-it’s thread_data
1 struct stamp_it::thread_data
2 {
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3 ~thread_data();
4 void enter_region();
5 void leave_region();
6 void add_retired_node(deletable_object_with_stamp* p);
7
8 private:
9 void ensure_has_control_block();

10
11 void process_local_nodes();
12 void process_global_nodes();
13
14 // This threshold defines the max. number of nodes a thread may collect
15 // in the local retire-list before trying to reclaim them. It is checked
16 // every time a new node is added to the local retire-list.
17 static const std::size_t try_reclaim_threshold = 40;
18 // The max. number of nodes that may remain a threads local retire-list
19 // when it leaves it’s critical region. If there are more nodes in the
20 // list, then the whole list will be added to the global retire-list.
21 static const std::size_t max_remaining_retired_nodes = 20;
22
23 thread_control_block* control_block = nullptr;
24 unsigned region_entries = 0;
25 std::size_t number_of_retired_nodes = 0;
26
27 deletable_object_with_stamp* first_retired_node = nullptr;
28 deletable_object_with_stamp** prev_retired_node = &first_retired_node;
29 }

In contrast to other schemes, the internal retire-list is organized as a FIFO queue where
new retired nodes are added to the end of the queue; that is the reason for the two
pointers first_retired_node and prev_retired_node. This way the list of retired nodes
is ordered by their stamp values, with first_retired_node pointing to the node with
the lowest stamp.

The class contains definitions of two constants that are relevant for the reclamation
process: try_reclaim_threshold and max_remaining_nodes. When a new retired node
is added to the list and the number of retired nodes exceeds the try_reclaim_threshold,
we immediately try to reclaim as many nodes as possible from our local retire-list. Since
the check whether a node can be reclaimed is very cheap, this threshold can be quite low.
When a thread leaves its critical region we also reclaim as many nodes as possible, but
there is a good chance that some nodes cannot be reclaimed yet and therefore remain in
our local retire-list. If the number of remaining nodes exceeds max_remaining_nodes, we
take the whole local retire-list and add it as a “chunk” to the global retire-list. That way
some other thread can handle them.

There are two methods to process and reclaim retired nodes: process_local_nodes
and process_global_nodes. As the name suggests, the first one reclaims all nodes from
the local retire-list that have a stamp value less than tail’s stamp. It is called from
add_retired_node when the number of nodes exceeds the try_reclaim_threshold, and
from leave_region when this thread was not the last one. If, on the other hand, this
thread was the last one, leave_region instead calls process_global_nodes. This method
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tries to fetch the global retire-list, adds the local retire-list as another chunk to it and
walks the list of chunks, reclaiming as many nodes from each chunk as possible. The
remaining list of chunks is then again added to the global retire-list.

4.4.6.4 The thread_control_block class

Each thread holds a thread_control_block instance in its local thread_data instance.
This thread_control_block is used as a node representing the owning thread in the
thread_order_queue, but to avoid confusion with other usages of the term “node” it
is referred to as “block”. The definition of the thread_control_block class is shown in
Listing 4.38. Similar to the previous schemes it derives from thread_block_list::entry
so we inherit all the methods for adopting and abandoning blocks. As additional data
member it only holds the next and prev pointers and the stamp, which are all used in
the thread_order_queue as described later.

Listing 4.38: Stamp-it’s thread_control_block
1 struct stamp_it::thread_control_block :
2 detail::aligned_object<thread_control_block, 1 << MarkBits>,
3 detail::thread_block_list<thread_control_block>::entry
4 {
5 using concurrent_ptr =
6 std::atomic<detail::marked_ptr<thread_control_block, MarkBits>>;
7
8 concurrent_ptr prev;
9 concurrent_ptr next;

10
11 std::atomic<stamp_t> stamp;
12 };

4.4.6.5 The thread_order_queue class

This data structure is used to keep track which threads have entered a critical region
and in which order. It holds two dummy blocks head and tail that cannot be removed,
and new blocks are inserted right after head. The prev pointers define the direction from
head to tail; this direction is always kept consistent11. The next pointers define the
direction from tail to head, but they only act as hints where to find the next block. It
is thus possible that in an intermediate state a block, which is already inserted in the
prev list, does not occur in the next list (and the other way round in case of removal).

As just mentioned, the prev pointer points towards tail and next points towards
head, i.e., the prev direction goes from head to tail and the next direction from tail to
head. When looking at a block and its neighbors, i.e., its successor and predecessor, it is
important to also consider the direction we are currently looking at. For example, the
predecessor of a block b in prev direction is some block whose prev pointer is pointing

11For those who are familiar with the originally proposed doubly-linked list by Sundell and Tsigas [ST05]
this is a minor but important difference; in the original version next was kept consistent and prev acted as
hints. However, I reversed the directions for this data structure as it seemed more natural in this context.
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to b, while the predecessor of b in next direction would be some other block whose next
pointer is pointing to b. In many cases I will explicitly state the direction we are looking
at to avoid any ambiguity. When no direction is mentioned, we are usually talking about
the prev direction, since this is the one that is kept consistent and is therefore the “single
source of truth”.

Each block, including head and tail, holds a stamp counter. When a new block gets
inserted, it loads head’s prev pointer and stores it in its local prev, then it increases
head’s stamp using an atomic fetch-and-add operation, stores the returned value in its
local stamp and then performs a CAS on head->prev in order to insert itself into the prev
list. This ensures that head always holds the highest stamp and that the stamps in prev
direction are strong monotonically decreasing, i.e., the stamp of the newly added block is
greater than all other blocks (except head). The only exception to this is the tail block,
as its stamp should always reflect the stamp value of its immediate predecessor in prev
direction; the reason for this is explained in more detail later.

Even though the next pointers only act as hints, it is still guaranteed that they
only point to blocks with a higher stamp value, i.e., the stamps in next direction are
strong monotonically increasing (with the tail block again being an exception). More
specifically, the next pointer of some block b can point to:

• head: This can be the case when head is the actual predecessor of b, or when some
other block c has inserted itself between head and b, but did not yet update b’s
next pointer. Note, when b has already marked its prev pointer, it can no longer
be updated by c, so this inconsistency can only be resolved once b is fully removed
from both lists.

• a block c which is still in the prev list: This is the “normal case”, i.e., usually c
is the predecessor of b; unless b is head, in which case the previously described
exception is possible.

• a block c which is removed from the prev list: This is the intermediate state when c
has been removed from the prev list, but not yet from the next list. So prev->next
points to c, but c is no longer the immediate predecessor of b in prev direction when
starting from head. However, by following c’s next pointer (and potentially those
of other removed blocks) one should end up at b’s new predecessor. It is, however,
possible that the previously described exception occurs and the next pointer of
some block on this path actually points to head. In this case one has start there
and follow the prev list to find b’s real predecessor.

An example is shown in Figure 4.1.
The links of the blocks t1, t3 and t4 are all marked so they cannot be updated. The

block t3 is already fully removed, i.e., it is not referenced by any prev nor next pointer.
The blocks t1 and t4 are marked for deletion, but are not yet fully removed; t1 has been
removed from the prev list, but is still in the next list; t4 is still fully linked.

t5 did already finish its push operation (since it is not green), but the next pointer of
its successor, t4, still points to head. This indicates that t4’s next pointer was already
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Figure 4.1: Example of blocks with their links; green blocks are not yet fully inserted,
red blocks are removed; red links are marked.

marked, so it could not be updated by t5. On the other hand, t6 is currently inside the
push operation; it has successfully inserted itself in the prev list, but the update of t5’s
next pointer is still pending.

The two lowest bits of the stamp counter are used to embed flags to track a block’s
state:

• PendingPush: This flag is used to signal that the block is currently getting inserted
into the queue.

• NotInList: This flag is used to signal that the block has been completely removed
from the queue, i.e., it is no longer part of the prev nor the next list. This implies
that the owning thread is no longer inside a critical region.

The two flags are mutually exclusive, so they cannot both be set at the same time.
The public interface of the class contains the following methods:

• push: Inserts the given block right after head.

• remove: Removes the block from the queue by removing it from the prev list as
well as the next list.

A thread that enters a critical region calls push with its own thread_control_block.
When a thread leaves a critical region, it removes itself from the queue. If this thread

was the last one (i.e., the prev pointer points to tail), then it tries to update tail’s stamp
to the stamp of the new “last” thread, i.e., the new predecessor of tail in prev direction.

A block can be in four different states:

• in the queue: In this state the delete marks of the prev and next pointer, as well
as the NotInList flag are cleared, the PendingPush flag is undetermined. Note that
this state only determines that the block was correctly inserted in prev direction,
but it does not state anything about the next direction. The reason for this is
that we cannot update the next pointer of a block when it is already marked for
removal.
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• in the process of getting removed from the queue: In this state the delete mark of
the prev pointer is set, the mark of next is undetermined and the NotInList and
PendingPush flags are cleared.

• fully removed from the queue: In this state the NotInList flag and prev’s delete
mark are set, the PendingPush flag is cleared and next’s delete mark is undetermined
(because it gets reset in the push operation before the PendingPush flag is set).

• in the process of getting inserted into the queue’s next list: In this state the
PendingPush flag is set, the NotInList flag and next’s delete mark are cleared and
prev’s delete mark is undetermined.

All these states and their transitions are depicted in Figure 4.2.

getting insertedgetting inserted

in the queuein the queue

getting removedgetting removed

fully removedfully removed

push

push remove

removepush

Figure 4.2: State-transition diagram for blocks in a thread_order_queue.

The implementations of the push and remove operations make heavy use of two helper
functions: make_marked and make_clean_marked. The make_marked function (shown in
Listing 4.39) takes a pointer to a thread_control_block and a marked_ptr, returning a
new marked_ptr with the value of the given thread_control_block and the mark value
of the given marked_ptr increased by TagInc. It is used to create new marked_ptr values
when updating a block’s next or prev pointers. The make_clean_marked function works
just like make_marked, except that it implicitly resets the delete flag.

Listing 4.39: make_marked helper function
1 marked_ptr make_marked(thread_control_block* p, const marked_ptr& mark)
2 {
3 return marked_ptr(p, (mark.mark() + TagInc) & MarkMask);
4 }
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The implementation of the push method is shown in Listing 4.40.

Listing 4.40: Stamp-it’s push
1 void stamp_it::thread_order_queue::push(thread_control_block* block)
2 {
3 // (1) - this release-store synchronizes-with the acquire-loads
4 // (7, 8, 20, 24, 25, 29, 31, 32)
5 block->next.store(make_clean_marked(head, block->next), std::memory_order_release);
6
7 marked_ptr head_prev = head->prev.load(std::memory_order_relaxed);
8 marked_ptr my_prev;
9 size_t stamp;

10
11 for (;;)
12 {
13 marked_ptr head_prev2 = head->prev.load(std::memory_order_relaxed);
14 if (head_prev != head_prev2)
15 {
16 head_prev = head_prev2;
17 continue;
18 }
19
20 // fetch a new stamp and set the PendingPush flag
21 // (2) - this seq_cst-fetch-add enforces a total order with (12)
22 // and synchronizes-with the acquire-loads (19, 23)
23 stamp = head->stamp.fetch_add(StampInc, std::memory_order_seq_cst);
24 auto pending_stamp = stamp - (StampInc - PendingPush);
25
26 // (3) - this release-store synchronizes-with the acquire-loads (19, 23, 30)
27 block->stamp.store(pending_stamp, std::memory_order_release);
28
29 if (head->prev.load(std::memory_order_relaxed) != head_prev)
30 continue;
31
32 my_prev = make_clean_marked(head_prev.get(), block->prev);
33
34 // (4) - this release-store synchronizes-with the acquire-loads
35 // (15, 17, 18, 22, 26)
36 block->prev.store(my_prev, std::memory_order_release);
37
38 // (5) - in this acq_rel-CAS the:
39 // - acquire-load synchronizes-with the release-stores (5, 21, 28)
40 // - release-store synchronizes-with the acquire-loads (5, 15, 18, 22)
41 if (head->prev.compare_exchange_weak(head_prev, make_marked(block, head_prev),
42 std::memory_order_acq_rel,
43 std::memory_order_relaxed))
44 break;
45 // Back-Off
46 }
47
48 // reset the PendingPush flag
49 // (6) - this release-store synchronizes-with the acquire-load (19, 23, 30)
50 block->stamp.store(stamp, std::memory_order_release);
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51
52 // try to update our successor’s next pointer
53 // (7) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
54 auto link = my_prev->next.load(std::memory_order_acquire);
55 for (;;)
56 {
57 if (link.get() == block ||
58 link.mark() & DeleteMark ||
59 block->prev.load(std::memory_order_relaxed) != my_prev)
60 // our successor is in the process of getting removed,
61 // or has been removed already -> never mind
62 break;
63
64 // (8) - in this CAS the:
65 // - release-store synchronizes-with the acquire-loads
66 // (7, 8, 14, 20, 24, 25, 29, 31, 32)
67 // - acquire-reload synchronizes-with the release-stores (1, 8, 27)
68 if (my_prev->next.compare_exchange_weak(link, make_marked(block, link),
69 std::memory_order_release,
70 std::memory_order_acquire))
71 break;
72
73 // Back-Off
74 }
75 }

We start by setting the next pointer to head, since we are always inserting blocks right
after head. After that we load the current value of head->prev, which we will need
later. In the next step we perform a fetch_add on head->stamp, thus incrementing head’s
stamp and calculating the new stamp for the block we are about to insert. This new
stamp value is adapted so that it has the PendingPush flag set before it is stored in our
block. After that we write the previously loaded prev value in our block’s prev pointer
and attempt a CAS operation to update head->prev with our own block. Note that it
is important that the stamp and prev fields of the block are written in this order; the
details of why this is the case are explained in Section 4.4.6.8.

When the CAS is successful we have inserted our block in the prev list and can
therefore reset the PendingPush flag. What remains now is that we update our successor’s
next pointer so that it references our newly inserted block. This is done in the final loop
that simply performs the according CAS until either:

• the CAS operation was successful,

• the link is marked and can therefore not be updated,

• or some other thread has already updated the link to point to our new block.

The remove method (shown in Listing 4.41) first marks the prev and next pointers before
calling remove_from_prev_list and (optionally) remove_from_next_list. Once the block
is fully removed from the list we can set the NotInList flag and check if this block was the
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last one, i.e., if it was tail’s predecessor. If that is the case, we call update_tail_stamp
to try to update tail’s stamp to that of the new last block.

Listing 4.41: Stamp-it’s remove
1 bool stamp_it::thread_order_queue::remove(marked_ptr n)
2 {
3 // We need acq-rel semantic here to ensure the happens-before relation
4 // between the remove operation and the reclamation of any node.
5 // - acquire to establish sychnronize-with relation with previous blocks
6 // that removed themselves by updating our prev.
7 // - release to establish synchronize-with relation with other threads
8 // that potentially remove our own block before we can do so.
9

10 // (9) - in this acq_rel CAS the:
11 // - acquire-load of synchronizes-with the release-stores (21, 28)
12 // - release-store of synchronizes-with the acquire-loads (15, 17, 18, 22, 26)
13 marked_ptr prev = set_mark_flag(block->prev, std::memory_order_acq_rel);
14 marked_ptr next = set_mark_flag(block->next, std::memory_order_relaxed);
15
16 bool fully_removed = remove_from_prev_list(prev, block, next);
17 if (!fully_removed)
18 remove_from_next_list(prev, block, next);
19
20 auto stamp = block->stamp.load(std::memory_order_relaxed);
21 // set the NotInList flag to signal that this block is no longer part of the queue
22 block->stamp.store(stamp + NotInList, std::memory_order_relaxed);
23
24 bool wasTail = block->prev.load(std::memory_order_relaxed).get() == tail;
25 if (wasTail)
26 {
27 // Since the stamps of the blocks between tail and head are strictly increasing,
28 // we can call update_tail_stamp with the next higher stamp (i.e., stamp+StampInc)
29 // as the ’next best guess’.
30 update_tail_stamp(stamp + StampInc);
31 }
32
33 return wasTail;
34 }

Marking the two pointers signals to other threads that this block is about to be removed,
and at the same time prevents the pointers from being updated by some CAS operation
from a thread that did not yet see the mark. In order to remove a block b from the prev
list, the thread has to find its predecessor, i.e., the block c with the prev pointer pointing
to b, and update c’s prev pointer with the value of b’s prev pointer. But it can of course
happen that c’s prev pointer is also marked and can therefore not be updated. In this
case we have to find c’s predecessor and help remove c before we can continue with the
removal of b. By removing c, we get a new predecessor for b. So we can restart the loop
and try to remove it again. The same idea is applied when removing a block from the
next list.

Since a block b can only be removed from the prev list when its immediate predecessor
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is not marked, any marked immediate predecessor has to be removed before b can be
removed. This leads to the following conclusion: Whenever a thread that tries to remove
a marked block b encounters another block c which is supposed to come after b in
prev direction (i.e., it was found by following the prev pointers starting from b), where
stampc > stampb, or stampc has the NotInList flag set, and all blocks on the path from
b to c are also marked, we can conclude that b has already been removed from both lists.

Since c was encountered after b in prev direction, it is supposed to have a lower
stamp than b; it can only have a greater stamp if it was removed and reinserted. But
since all blocks between c and b are marked, c could not have been removed without first
removing all those blocks, including b. The same holds for the case when the NotInList
flag is set, as the flag is only set once the block has been fully removed.

The remove_from_prev_list method (shown in Listing 4.42) does exactly what its
name suggests: It removes the block b from the prev list. This is done in a lock-free
manner by helping remove potentially marked predecessors of b as just described. The
method keeps track of three different pointers:

prev this is a reference to the next unmarked block in prev direction, i.e., the block that
we want to set as the new value for our predecessor’s prev pointer. We get to this
block by following our own prev pointer and the prev pointers of marked blocks (if
any).

next this is a reference to some block that precedes our own block in prev direction.
By following this block’s prev pointer we should end up at our own block, unless
some other thread has removed it already. This way we can efficiently find our
immediate predecessor to update its prev pointer.

last this is a reference to a helper block that is used to remove potentially marked
predecessors of our own block. When this pointer is not null, it should be the
immediate predecessor of the next block.

So the order of the blocks in prev direction should be as follows: last (if it is set),
next, our own block b, and prev. Each of these blocks can potentially be removed and
reinserted at any time (except of course b, which can be removed by some other thread,
but not reinserted). For next and last we have to consider this possibility and take
appropriate actions. However, when we recognize that prev has been removed or maybe
even reinserted, we can stop since we know that b must have been removed already as
well (as previously described). The initial values of prev and next that we start from
are passed to the method when it is called in remove. However, they are not just input
but also output parameters, so we can use the latest values in the subsequent call to
remove_from_next_list (if necessary).

Listing 4.42: Stamp-it’s remove_from_prev_list
1 bool stamp_it::thread_order_queue::remove_from_prev_list(
2 marked_ptr& prev, marked_ptr b, marked_ptr& next)
3 {
4 const auto my_stamp = b->stamp.load(std::memory_order_relaxed);
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5 marked_ptr last = nullptr;
6 for (;;)
7 {
8 // check if the block is already deleted
9 if (next.get() == prev.get())

10 {
11 next = b->next.load(std::memory_order_relaxed);
12 return false;
13 }
14
15 auto prev_prev = prev->prev.load(std::memory_order_relaxed);
16 auto prev_stamp = prev->stamp.load(std::memory_order_relaxed);
17
18 // check if prev has been removed
19 if (prev_stamp > my_stamp || // prev has been reinserted already
20 prev_stamp & NotInList) // prev has been removed
21 {
22 return true;
23 }
24
25 if (prev_prev.mark() & DeleteMark)
26 {
27 if (!mark_next(prev, prev_stamp))
28 {
29 // prev is marked for deletion, but mark_next failed because the stamp
30 // of prev has been updated - i.e., prev has been deleted already (and
31 // maybe even reinserted)
32 // -> this implies that b must have been removed as well.
33 return true;
34 }
35 // This acquire-reload is needed to establish a happens-before relation
36 // between the remove operations and the reclamation of a node.
37 // (17) - this acquire-load synchronizes-with the release-stores (4, 9, 21, 28)
38 prev = prev->prev.load(std::memory_order_acquire);
39 continue;
40 }
41
42 // We need need to obtain a consistent set of "prev" and "stamp" values
43 // from next, otherwise we could wrongfully update next_prev’s stamp in
44 // save_next_as_last_and_move_next_to_next_prev, since we cannot be sure
45 // if the "prev" value we see in the reload belongs to a block that is
46 // part of the list.
47
48 // (18) - this acquire-load synchronizes-with the release-stores (4, 5, 9, 21, 28)
49 auto next_prev = next->prev.load(std::memory_order_acquire);
50 // (19) - this acquire-load synchronizes-with the release-stores (2, 3, 6)
51 auto next_stamp = next->stamp.load(std::memory_order_acquire);
52
53 if (next_prev != next->prev.load(std::memory_order_relaxed))
54 continue;
55
56 if (next_stamp < my_stamp)
57 {

99



58 next = b->next.load(std::memory_order_relaxed);
59 return false;
60 }
61
62 // Check if next has been removed from list or whether it is currently getting
63 // inserted. It could be that the block is already inserted, but the PendingPush
64 // flag has not yet been cleared. Unfortunately, there is no way to identify this
65 // case here, so we have to go back yet another block. We can help resetting this
66 // flag once we are sure that the block is already part of the list, which is
67 // exactly what happens in save_next_as_last_and_move_next_to_next_prev.
68 if (next_stamp & (NotInList | PendingPush))
69 {
70 if (last.get() != nullptr)
71 {
72 next = last;
73 last.reset();
74 }
75 else
76 // (20) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
77 next = next->next.load(std::memory_order_acquire);
78 continue;
79 }
80
81 if (remove_or_skip_marked_block(next, last, next_prev, next_stamp))
82 continue;
83
84 // check if next is the predecessor of b
85 if (next_prev.get() != b.get())
86 {
87 save_next_as_last_and_move_next_to_next_prev(next_prev, next, last);
88 continue;
89 }
90
91 // unlink "b" from prev list
92 // (21) - this release-CAS synchronizes-with the acquire-loads
93 // (5, 9, 15, 17, 18, 22, 26)
94 if (next->prev.compare_exchange_strong(next_prev,
95 make_marked(prev.get(), next_prev),
96 std::memory_order_release,
97 std::memory_order_relaxed))
98 return false;
99

100 // Back-Off
101 }
102 }

The method essentially consists of a large loop that keeps track of the three mentioned
blocks, while trying to find the direct predecessor of the block b that we want to remove.
Once we have found that predecessor, we can try to update its prev pointer in order
to remove b. There are several conditions that lead to the termination of this loop. In
some of these cases we can conclude that b is already fully removed from both lists; this
is signaled to the caller by returning true. In the other cases we know that b has been
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successfully removed from the prev list, but we still need to ensure that it is also removed
from the next list; this is signaled to the caller by returning false. In the latter case we
also have to ensure that next and prev point to blocks that allow remove_from_next_list
to work correctly. The following paragraphs provide a more detailed explanation of the
loop’s code.

If the prev and next pointers point to the same block, b must have been removed
from the prev list already. However, we do not know whether it is still part of the next
list, so we set next to b’s next pointer to allow remove_from_next_list to start from
there and return false.

Otherwise, we load prev’s prev pointer and stamp. If the loaded stamp value is greater
than b’s stamp or has the NotInList flag set, we can conclude that prev must have been
removed already and therefore b must have been removed too, so we can simply return
true.

Otherwise, we check whether prev’s prev pointer is marked. If that is the case, we
try to set the delete mark on the next pointer using the mark_next method (shown in
Listing 4.43). This method performs a CAS loop trying to set the delete mark on prev’s
next pointer as long as prev’s stamp matches the stamp value we previously read. When
we detect that the stamp has changed, we can conclude that prev must have been removed
already, so we return true. Otherwise, either the CAS operation succeeds or we recognize
that some other thread has already set the delete mark, so we return false.

In the first case, i.e., when mark_next returns true, we can again conclude that b
must have been removed, so remove_from_prev_list can return true. Otherwise, we set
prev to the previously read prev pointer and restart the whole loop.

Listing 4.43: Stamp-it’s mark_next
1 bool stamp_it::thread_order_queue::mark_next(marked_ptr block, size_t stamp)
2 {
3 // (31) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
4 auto link = block->next.load(std::memory_order_acquire);
5 // We need acquire to synchronize-with the release store in push. This way it is
6 // guaranteed that the following stamp.load sees the NotInList flag or some newer
7 // stamp, thus causing termination of the loop.
8 while (block->stamp.load(std::memory_order_relaxed) == stamp)
9 {

10 auto mark = link.mark()
11 if (mark & DeleteMark ||
12 // (32) - this acquire-reload synchronizes-with the release-stores (1, 8, 27)
13 block->next.compare_exchange_weak(link,
14 marked_ptr(link.get(), mark | DeleteMark),
15 std::memory_order_relaxed,
16 std::memory_order_acquire))
17 return true;
18 }
19 return false;
20 }

In the next step we have to load a consistent set of prev and stamp values from next (the
reason for this is explained in more detail in Section 4.4.6.8). For this we first load prev,
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followed by stamp and finally perform a reload of prev. When the reload of prev returns
a different value we do not have a consistent set of values, so we simply restart the loop.
Otherwise we can continue with checking if the next’s stamp is less than b’s stamp. If
this is the case we can conclude that b must have been removed from the prev list, but
we still have to ensure that it is also removed from the next list. So we again reset next
to b’s next and return false.

Otherwise we check if the previously loaded stamp has the NotInList or PendingPush
flag set. If that is the case we cannot use this block since it might not be part of the
prev list. For the NotInList flag this is pretty obvious, but for the PendingPush flag this
is a little more subtle; the flag signals that the block is currently getting inserted into
the prev list, but with the information we have available at this time it is impossible to
tell whether this has already happened or not. So we have no choice but to move next to
the next known block in next direction. In case we have a valid last pointer, we use this
one (as it is supposed to be the predecessor of next in prev direction), otherwise we take
next’s next pointer and restart the loop.

Then we call remove_or_skip_marked_block (shown in Listing 4.44) with the values
we just loaded from next. This method checks whether the next block is marked, and if
that is the case, tries to remove it. But we can only remove it if we have a valid last
pointer; remember, last is supposed to be the predecessor of next, so if it is set, we can
perform a CAS trying to update last’s prev to the just loaded prev pointer from next. In
case we have no last pointer, we have to move next to the next block in next direction.

Listing 4.44: Stamp-it’s remove_or_skip_marked_block
1 bool stamp_it::thread_order_queue::remove_or_skip_marked_block(
2 marked_ptr& next, marked_ptr& last, marked_ptr next_prev, stamp_t next_stamp)
3 {
4 // check if next is marked
5 if (next_prev.mark() & DeleteMark)
6 {
7 if (last.get() != nullptr)
8 {
9 // check if next has "overtaken" last

10 if (mark_next(next, next_stamp) &&
11 last->prev.load(std::memory_order_relaxed) == next)
12 {
13 // unlink next from prev-list
14 // (28) - this release-CAS synchronizes-with the acquire-loads
15 // (5, 9, 15, 17, 18, 22, 26)
16 last->prev.compare_exchange_strong(next, make_marked(next_prev.get(), next),
17 std::memory_order_release,
18 std::memory_order_relaxed);
19 }
20 next = last;
21 last.reset();
22 }
23 else
24 // (29) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
25 next = next->next.load(std::memory_order_acquire);
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26
27 return true;
28 }
29 return false;
30 }

In case remove_or_skip_marked_block returns true we have a new value in next so we
restart the loop. Otherwise, we continue by checking whether next’s prev pointer matches
our b, i.e., if next is b’s predecessor in prev direction. If that is not the case we call
save_next_as_last_and_move_next_to_next_prev (shown in Listing 4.45) and restart
the loop.

The save_next_as_last_and_move_next_to_next_prev method tries to move next to
the following block in prev direction, while keeping the old value of next in last. There
is a special case that needs to be handled. It could happen that the next block in
prev direction has successfully inserted itself into the list (obviously, otherwise we could
not have found it by following the path of unmarked prev pointers), but still has the
PendingPush flag set, i.e., it did not yet finish its push operation. Remember that we
previously checked that next’s stamp does not have the PendingPush flag set, because
otherwise we would have to dismiss the block as we could not determine whether it is
already inserted? Now we can conclude that it is in fact part of the prev list, so we help
the other thread resetting the PendingPush flag. This is necessary to ensure lock-freedom,
as otherwise we would iterate infinitely because in the next iteration the previously
mentioned check would hit again.

Listing 4.45: Stamp-it’s save_next_as_last_and_move_next_to_next_prev
1 void stamp_it::thread_order_queue::save_next_as_last_and_move_next_to_next_prev(
2 marked_ptr next_prev, marked_ptr& next, marked_ptr& last)
3 {
4 // (30) - this acquire-load synchronizes-with the release-stores (3, 6)
5 size_t next_prev_stamp = next_prev->stamp.load(std::memory_order_acquire);
6
7 if (next_prev_stamp & PendingPush &&
8 next_prev == next->prev.load(std::memory_order_relaxed))
9 {

10 // since we got here via an (unmarked) prev pointer next_prev has been added
11 // to the "prev-list", but the PendingPush flag has not been cleared yet.
12 // i.e., the push operation for next_prev is still pending
13 // -> help clear the PendingPush flag
14 auto expected = next_prev_stamp;
15 const auto new_stamp = next_prev_stamp + (StampInc - PendingPush);
16 if (!next_prev->stamp.compare_exchange_strong(expected, new_stamp,
17 std::memory_order_relaxed))
18 {
19 // CAS operation failed, i.e., the stamp of next_prev has been changed
20 // since we read it. Check if some other thread cleared the flag already
21 // or whether next_prev has been removed (and potentially readded).
22 if (expected != new_stamp)
23 {
24 // the stamp has been updated to an unexpected value, so next_prev has
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25 // been removed already -> we cannot move to next_prev, but we can keep
26 // the current next and last.
27 return;
28 }
29 }
30 }
31 last = next;
32 next = next_prev;
33 }

If, on the other hand, next’s prev does match b, we have found b’s predecessor, so we
attempt a CAS on next’s prev with our current prev. If the CAS succeeds we have
successfully removed b (as well as all the other marked blocks following b in prev direction
on the path to prev) and can return false. Otherwise some other thread interfered, so
we simply restart the loop and try again.

When remove_form_prev_list returns true, we know that our block has been fully
removed from both lists already. Otherwise we still need to remove it from the next list
as well; this is done in remove_from_next_list (shown in Listing 4.46).

Listing 4.46: Stamp-it’s remove_from_next_list
1 void stamp_it::thread_order_queue::remove_from_next_list(
2 marked_ptr prev, marked_ptr removed, marked_ptr next)
3 {
4 const auto my_stamp = removed->stamp.load(std::memory_order_relaxed);
5 marked_ptr last = nullptr;
6 for (;;)
7 {
8 // (22) - this acquire-load synchronizes-with the release-stores (4, 5, 9, 21, 28)
9 auto next_prev = next->prev.load(std::memory_order_acquire);

10 // (23) - this acquire-load synchronizes-with the release-stores (2, 3, 6)
11 auto next_stamp = next->stamp.load(std::memory_order_acquire);
12
13 if (next_prev != next->prev.load(std::memory_order_relaxed))
14 continue;
15
16 // check if next has been removed from list
17 if (next_stamp & (NotInList | PendingPush))
18 {
19 if (last.get() != nullptr)
20 {
21 next = last;
22 last.reset();
23 }
24 else
25 {
26 // (24) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
27 next = next->next.load(std::memory_order_acquire);
28 }
29 continue;
30 }
31
32 // (25) - this acquire-load synchronizes-with the release-stores (1, 8, 27)
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33 auto prev_next = prev->next.load(std::memory_order_acquire);
34 auto prev_stamp = prev->stamp.load(std::memory_order_relaxed);
35
36 // check if prev has a higher stamp than the block we want to remove.
37 if (prev_stamp > my_stamp || prev_stamp & NotInList)
38 {
39 // due to strict order of stamps the prev block must have been removed already -

and with it b.
40 return;
41 }
42
43 // check if prev block is marked for deletion
44 if (prev_next.mark() & DeleteMark)
45 {
46 // This acquire-load is needed to establish a happens-before relation
47 // between the different remove operations and the reclamation of a node.
48 // (26) - this acquire-load synchronizes-with the release-stores (4, 9, 21, 28)
49 prev = prev->prev.load(std::memory_order_acquire);
50 continue;
51 }
52
53 if (next.get() == prev.get())
54 return;
55
56 if (remove_or_skip_marked_block(next, last, next_prev, next_stamp))
57 continue;
58
59 // check if next is the predecessor of prev
60 if (next_prev.get() != prev.get())
61 {
62 save_next_as_last_and_move_next_to_next_prev(next_prev, next, last);
63 continue;
64 }
65
66 if (next_stamp <= my_stamp || prev_next.get() == next.get())
67 return;
68
69 auto new_next = make_marked(next.get(), prev_next);
70 if (next->prev.load(std::memory_order_relaxed) == next_prev &&
71 // (27) - this release-CAS synchronizes-with the acquire-loads
72 // (7, 8, 14, 20, 24, 25, 29, 31, 32)
73 prev->next.compare_exchange_weak(prev_next, new_next,
74 std::memory_order_release,
75 std::memory_order_relaxed))
76 {
77 if ((next->next.load(std::memory_order_relaxed).mark() & DeleteMark) == 0)
78 return;
79 }
80 // Back-Off
81 }
82 }

This method is quite similar to remove_from_prev_list. It also keeps track of the same
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three pointers, where the initial values for prev and next are those that were returned
by remove_from_prev_list. This allows us to continue from where we left, reducing the
amount of work in many cases.

In this method we have to set next to the last unmarked block with a stamp greater
than b’s stamp, and prev to the first unmarked block with a stamp less or equal to b’s
stamp (both in prev direction), i.e., the two blocks that would be the predecessor and
successor of b if b would still be part of the prev list. This entails that next’s prev pointer
must reference prev. Once we have found these blocks, we can attempt a CAS to update
prev’s next in order to finish removal of b from the next list. If the CAS succeeds, we
have successfully removed b. However, we still have to make sure that the prev block
has not been marked in the meantime. If this is the case we have to continue and help
remove prev from both lists in order to maintain the previously described condition,
which allows us to conclude that a block has been fully removed if we recognized that
the successor block has been fully removed.

Otherwise we can return to remove and set the NotInList flag as we have now
successfully removed b from both lists. In case our thread was the last one (i.e., if b’s prev
pointer points to tail) we must update tail’s stamp; this is done in update_tail_stamp
(shown in Listing 4.47).

Listing 4.47: Stamp-it’s update_tail_stamp
1 void stamp_it::thread_order_queue::update_tail_stamp(size_t stamp)
2 {
3 // In the best case the stamp of tail equals the stamp of tail’s predecessor (in
4 // prev direction), but we don’t want to waste too much time finding the "actual"
5 // predecessor. Therefore we simply check whether the block referenced by tail->next
6 // is the actual predecessor and if so take its stamp. Otherwise we simply use the
7 // stamp that was passed (which is kind of a "best guess").
8
9 // (14) - this acquire-load synchronizes-with the release-stores (8, 27)

10 auto last = tail->next.load(std::memory_order_acquire);
11 // (15) - this acquire-load synchronizes-with the release-stores (4, 5, 9, 21, 28)
12 auto last_prev = last->prev.load(std::memory_order_acquire);
13 auto last_stamp = last->stamp.load(std::memory_order_relaxed);
14 if (last_stamp > stamp &&
15 last_prev.get() == tail &&
16 tail->next.load(std::memory_order_relaxed) == last)
17 {
18 if (last.get() != head)
19 stamp = last_stamp;
20 else
21 {
22 // Special case when we take the stamp from head - the stamp in head gets
23 // incremented before a new block is actually inserted, but we must not use
24 // such a value if the block is not yet inserted. By updating prev with an
25 // incremented version a pending insertion would fail and cause a retry,
26 // therefore enforcing the strict odering. However, since we are potentially
27 // disturbing push operations, we only want to do this if it is "worth it",
28 // i.e., if the stamp we read from head is at least one increment ahead of
29 // our "next best guess".
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30 if (stamp < last_stamp - StampInc &&
31 head->prev.compare_exchange_strong(last_prev,
32 make_marked(last_prev.get(), last_prev),
33 std::memory_order_relaxed))
34 stamp = last_stamp;
35 }
36 }
37
38 // Try to update tail->stamp, but only as long as our new value is actually greater.
39 auto tail_stamp = tail->stamp.load(std::memory_order_relaxed);
40 while (tail_stamp < stamp)
41 {
42 // (16) - this release-CAS synchronizes-with the acquire-load (13)
43 if (tail->stamp.compare_exchange_weak(tail_stamp, stamp,
44 std::memory_order_release))
45 break;
46 }
47 }

Ideally we want to update tail’s stamp to that of its current predecessor in prev direction.
Unfortunately, finding this predecessor is not as simple as taking tail’s next pointer,
since it could point to head (due to the predecessor not having finished its push operation)
or to a block that could have been removed and potentially reinserted at the time we
read its stamp. Of course we can detect such cases and try to find the actual predecessor
by following the block’s prev pointer, but we do not want to waste too much time for this.
So we simply take tail’s next pointer, load that block’s stamp as well as its prev pointer,
and verify that the prev points to tail and tail’s next pointer is still unchanged. If so,
perfect—we found a direct predecessor of tail so we can use the stamp value we just
read. Otherwise, we stop searching and simply use the “next best guess”, which is our
own block’s stamp plus the usual stamp-increment.

There is, however, one special case that we have to consider: When the predecessor
we have found is head. When a block gets inserted into the queue it increases head’s
stamp, stores the old value in its own stamp and then performs the CAS to insert itself
into the prev list. Since the increment happens before the CAS, we could read the new
stamp value in update_tail_stamp, but the reload of prev could still return the old value.
Using this stamp value would result in tail having a greater stamp than the block that
is about to get inserted, which is a clear violation of our invariant. To solve this issue we
simply perform a CAS on head’s prev pointer in order to update the pointer’s tag value.
If the CAS succeeds, the CAS in the push operation will fail and the other thread will
have to perform a retry. Otherwise the push operation was faster and head is therefore
no longer the predecessor of tail. In this case we again simply stop wasting time and
use the “next best guess”.

Finally, we perform a simple CAS-loop, trying to update tail’s stamp as long as the
new value we want to write is greater than the value we are trying to replace.
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4.4.6.6 The guard_ptr class

The guard_ptr implementation is essentially identical to that of EBR (see Section 4.4.3.4).

4.4.6.7 The region_guard class

The region_guard implementation is essentially identical to that of NEBR (see Sec-
tion 4.4.4.2).

4.4.6.8 Correctness

I will provide a few arguments to show that the thread_order_queue is lock-free and
correct (i.e., the described invariants hold).

lock-freedom
Obviously, the push operation (see Listing 4.40) is lock-free. The first loop performs a
CAS operation in order to insert the block into the queue. In case the CAS succeeds, we
break out of the loop, otherwise we just restart the loop. The CAS can only fail if some
other thread interfered—either by inserting or removing some block12. But in this case
some other thread must have made progress.

The same argument can be applied to update_tail_stamp and mark_next. Both
methods contain loops that perform CAS operations, and a failure of these operations
can only be caused by progress in some other thread.

The remove_from_prev_list and remove_from_next_list are a bit more complex.
Since they are quite similar, the following arguments can be applied to both methods.
As mentioned before, both methods keep track of a prev and a next pointers. In each
iteration we perform one of the following changes in case we have to restart the loop:

• move prev along the prev direction (in case prev is marked)

• move next along the prev direction (in case next is not prev’s predecessor)

• remove next from the prev list (in case next is marked and we have a last pointer)

• move next along the next direction (in case next is marked and we have no last
pointer, or next has the NotInList or PendingPush flag set)

• nothing (in case the CAS to remove b failed)

The block b splits the prev list into two sublists: The sublist from head to b, and the
sublist from b to tail. next points to a block in the first sublist and prev points to a
block in the second sublist. New blocks are inserted at the beginning of the prev list
(right after head), i.e., they become part of the first sublist. So the number of times we
can move next in prev direction until we reach b is bounded by the number of entries in

12Theoretically this can also be caused by a spurious failure as we use a compare_exchange_weak
operation, but these spurious failures do not spoil lock-freedom.
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the first sublist, and the number of times we can move prev in prev direction until we
reach tail is bounded by the number of entries in the second sublist.

The case where we have to move next back in next direction because it is marked and
we have no valid last can be resolved by following next’s next pointer and from there
move again along prev, while maintaining last. So the next time we encounter the same
marked block, we will be able to remove it as we should now have a valid last pointer.
In the worst case scenario we have to move along the next direction until next points to
head, from where we can then start to move next along the prev direction, potentially
removing any marked blocks. The case where next has the PendingPush flag set can be
resolved in the same way.

This leaves us with the cases where next has the NotInList flag set or the CAS
operation to remove b fails. But both cases can only occur when another thread changed
the data structure in some way that it is no longer consistent with our thread’s view.
So unless some other thread interferes, for both methods, remove_from_prev_list and
remove_from_next_list, it is guaranteed that at any time a thread is able to finish the
method in a bounded number of steps.

Unfortunately, the block pointed to by next can be removed and reinserted at any
time. Obviously, this spoils the previously mentioned bounds as with every reinsertion the
block is put back right at the beginning of the prev list. However, this implies that the
owning thread of this reinserted block has been able to finish its remove and subsequent
push operation, i.e., it has made progress. Thus, the requirements for lock-freedom are
fulfilled as it is guaranteed that at any time at least one thread makes progress: If there
is no conflict with another thread, we can finish the operation in a bounded number of
steps; otherwise, the interfering thread was able to make progress.

The main difficulty in the thread_order_queue data structure stems from the fact that
each block can be removed and reinserted at any time. When a block gets reinserted, the
delete marks in the next and prev pointers are cleared. So in contrast to the original
dequeue by Sundell and Tsigas [ST05] we cannot rely solely on these marks, but have to
establish more sophisticated checks to prevent invalid updates to these pointers.

All the relevant operations use only the three atomic member variables from the
thread_control_block class: prev, next and stamp. But there are a lot of operations on
these variables and, more importantly, the order in which these operations are performed
on the variables plays an important role. In particular, the order in which different
operations are performed on a single instance of these variables. Trying to describe all
these possible variations and their implications in a formal way as shown in the previous
sections would result in very large, complex and difficult to understand graphs. So instead,
I resort to simple textual description for most of the relevant inter-operations. Similar
to the formal notation, I will mark references in the text to atomic operations with the
according number from the source code, e.g., (6) would reference the operation with the
number 6 from the Stamp-it source code. In the source code each atomic operation is
annotated with a number and a list of numbers referencing other operations that this
operation synchronizes-with.
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The push method
Suppose we want to insert the block b into the thread_order_queue. The push operation
first sets b’s next pointer to head (1), implicitly clearing the delete mark. Then it loads
head’s prev pointer, performs the fetch-add on head’s stamp (2), and stores the new value
in b’s stamp (3), implicitly clearing the NotInList, but setting the PendingPush flag. In
the next step it stores the previously loaded prev pointer in b’s prev (4) and attempts
a CAS on head’s prev (5) to finally insert b into the list. If this CAS fails, it simply
restarts the loop and tries again. Otherwise, b is now part of the prev list, so it performs
another write to b’s stamp to clear the PendingPush flag (6).

Finally, it tries to update the next pointer of our successor (prev). It first performs
an acquire-load on prev’s next (7), followed by a loop in which it checks if prev’s next is
marked, has already been set to point to b, or if the prev pointer of our block has been
updated. The later case would imply that prev has been removed from the prev list,
which in turn implies that the next list will be updated as part of that remove operation
anyway. So if either of those checks is true, we immediately terminate the loop as there
is nothing left to be done. Otherwise, we perform the CAS operation to update our
prev’s next pointer (8). If the CAS succeeds, it uses release-semantics to write the new
value to head’s prev. If the CAS fails, it uses acquire-semantics for the reload. This
acquire-reload synchronizes-with any release-store on next (1, 8, 27), ensuring that we
see any potential updates to our block’s prev pointer in the next iteration.

All the store operations use release-semantic to ensure that any remove operations
recognize the changes made to the block we are currently inserting. The CAS that inserts
the block (5) uses memory_order_acq_rel and is therefore establishing a synchronize-with
relation with all previous push operations (acquire-semantics), as well as any future push
operations (release-semantics).

The remove_from_prev_list method
In the remove_from_prev_list method we look for the predecessor (next) of our block
b and try to remove b by performing a CAS operation on that predecessor’s prev
pointer, setting it to some block (prev) that follows b in prev direction. So in order for
remove_from_prev_list to work correctly we have to ensure that:

1. the CAS operation updates a block that is part of the prev list,

2. the CAS operation stores a pointer to a successor of b in prev direction that is still
part of the prev list at the time the CAS operation is performed,

3. all blocks on the path in prev direction from next to prev are marked, i.e., no
unmarked blocks get removed.

The CAS operation is only performed if next’s prev pointer is unmarked and points
to b. The prev pointer being unmarked implies that next can only be “in the queue”
or “getting inserted” (see Figure 4.2). To ensure that we are actually dealing with a
block that is “in the queue”, we load a consistent set of prev and stamp values from
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next: First we perform an acquire-load on prev (18), followed by an acquire-load of
stamp (19), and finally a relaxed reload of prev to ensure that it matches the value
returned by the previous load. When the first acquire-load (18) returns an unmarked
value, it synchronizes-with the release-store in push (4), ensuring that the following
load returns the latest value of stamp, i.e., the value with the PendingPush flag which
is written immediately before the prev pointer, or some newer value. The subsequent
acquire-load of stamp (19) in turn synchronizes-with the release-store in push (3, 6), and
therefore ensures that we see the latest value written to prev, i.e., if the stamp value we
read was written by a subsequent insert operation (i.e., the block was inserted, removed
and reinserted again), we would recognize this since prev must have changed.

If the reload of prev does not match the previously read value, we simply restart
the loop. Otherwise, we check whether stamp has the NotInList or PendingPush flag
set. If this is the case, we cannot use this block, so we set next to next’s next pointer
and restart the loop. Otherwise, we know that next is “in the queue” and that we have
loaded the correct prev value.

In the next step we call remove_or_skip_marked_block with the just loaded values
from next. This function checks whether next’s prev is marked, and if that is the case
tries to remove next (if we have a valid last), or moves next to the next block in next
direction. It is described in more detail later.

Assuming that next’s prev is not marked, we continue with checking whether next’s
prev points to b, so we can safely attempt the CAS to remove b (21), thus ensuring the first
property. In case next’s prev does not point to b, we try to move next in prev direction
(i.e., towards b). But in order to do so we must ensure that the new block does not have the
PendingPush flag set. This is done in save_next_as_last_and_move_next_to_next_prev.

This approach also ensures the second property. A block can only remove itself by
updating its immediate predecessor, which requires that this predecessor must not be
marked. If it is marked, it has to be removed first. Suppose we want to remove the block
b and our successor in prev direction is prev. According to the second property we must
ensure that we only set next’s prev pointer to prev iff prev is still part of the prev list.
Suppose that prev has been removed in the meantime. For prev to be removed it has to
update its own predecessor (b), but since b is marked it first has to remove b. So when the
owning thread of b performs a CAS to update next’s prev pointer to point to prev (21),
this can only succeed if prev is still part of the list. Otherwise, the remove operation
of prev would have already removed b and the CAS would therefore fail since next’s
prev pointer is no longer pointing to b. This is also the reason why it is sufficient to use
relaxed loads when reading the prev and stamp values from prev. The third property
also follows from this approach, since initially prev is set to the immediate successor of b
in prev direction, and prev is only moved towards tail when it is marked.

The save_next_as_last_and_move_next_to_next_prev method
This method takes the current next and the previously loaded prev pointer from next
(next_prev) as input parameters. It tries to move next to the block pointed to by
next_prev while ensuring that the new block does not have the PendingPush flag set. We
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previously established that next is part of the prev list and that we loaded the correct
prev pointer, i.e., the block pointed to by next_prev was also part of the prev list at
that time. So when we load next_prev’s stamp (30) there can be two reasons for the
PendingPush flag to be set: Either that block’s thread was not yet able to finish its push
operation, or the block has been removed in the meantime and is now getting re-inserted.
To be able to tell the difference we perform an acquire-load on next_prev’s stamp (30),
and if it has the PendingPush flag set we perform a reload of next’s prev pointer, verifying
that it still matches next_prev. The acquire-load (30) synchronizes-with the release-store
in push that sets the PendingPush flag (3). So in case the block has been removed
and is now beeing reinserted, the reload of prev would return a different value, since
the remove operation of next_prev must have updated next’s prev and this update is
sequenced-before the release-store of stamp (3).

This allows us to determine whether next_prev is still part of the prev list and, if
necessary, help to reset its the PendingPush flag.

The remove_or_skip_marked_block method
This method takes four parameters: the current next pointer together with its prev and
stamp values, as well as the current last pointer. The prev and stamp values have to
reflect the state of next at a time it was “in the queue”. When next_prev has the delete
flag set and we also succeed in setting the delete flag in next’s next pointer, we attempt
to remove next by updating last’s prev pointer (28). last used to be our next pointer
in a previous iteration and we obtained the new next by following its prev pointer, so
our current next reflects the prev value of last at that time. Therefore, we can use our
current next as expected value for the CAS (28). It is guaranteed that the CAS (28) can
only succeed iff neither last nor next have been removed in the meantime, since in either
case last’s prev would have been updated.

The remove_from_next_list method
In this method we try to remove b by updating the next pointer of prev (the predecessor
of b in next direction) to next. So in order for remove_from_next_list to work correctly
we have to ensure that the CAS operation:

1. is performed on a block that is part of the next list,

2. stores a pointer to a successor of b in next direction that is still part of the next
list at the time the CAS operation is performed.

We first perform the same set of steps as in remove_from_prev_list to obtain a consistent
set of prev and stamp values from next, and verify that next does not have the NotInList
or PendingPush flags set. Then we perform an acquire-load on prev’s next (25), followed
by a relaxed load of prev’s stamp. If prev was already reinserted (or is currently in
the process of getting reinserted), the acquire-load (25) would synchronize-with the
release-store in push (1, 8), ensuring that the subsequent load of stamp would return the
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value with the NotInList flag set or some newer value. Thus, we would recognize that
prev has been removed already and can therefore ensure the first property.

Otherwise, we have loaded the prev_next value we will need to update, but before we
can do that we have to ensure that we have the right next block. For this we use the same
checks and helper methods as in remove_from_prev_list (i.e., remove_or_skip_block
and save_next_as_last_and_move_next_to_next_prev) to ensure that next is not marked
and that it is in fact the predecessor of prev.

Finally we perform a reload of next’s prev pointer before we attempt the CAS. This
is necessary to ensure that next has not been removed since we read its prev and stamp,
so we do not update prev to point to a block that is no longer part of the next list
(this ensures the second property). Assume that next has been removed. In this case
the remove operation would have had to update prev’s next pointer as part of its own
remove_from_next_list call. If the acquire-load of prev’s next pointer (25) returns the
updated value, the load synchronizes-with the release-CAS (27), so the reload of next’s
prev would return a new value, signaling that we have to restart the loop. Otherwise we
can safely attempt the CAS, since it will simply fail in case the load has returned an old
value or prev has been removed in the meantime.

The update_tail_stamp method
In update_tail_stamp we try to find the immediate predecessor of tail and update
tail’s stamp to the same value as its predecessor. To that end we perform an acquire-
load on tail’s next pointer (14), returning a pointer to the potential predecessor (last),
followed by an acquire-load of last’s prev (15) and a relaxed-load of last’s stamp. The
acquire-load of tail’s next (14) synchronizes-with one of the two possible release-stores
(8, 27), ensuring that the subsequent loads from last return the updated values. This
allows us to verify in the next step whether last’s stamp is actually greater than the
value we want to update, as well as whether last is an actual predecessor of tail. If that
is the case we check if last points to head. In that case we have to perform a CAS on
head’s prev, trying to set it to the previously loaded value with an updated tag. This is
necessary to ensure we only use the stamp from head if there is no pending push operation
that might insert a block with a lower stamp. If the CAS is successful, any pending
push operation will have to perform a retry and therefore get a new (greater) stamp.
Otherwise, some other thread interfered, so we simply resort to the “next best guess”
that was passed to update_tail_stamp by the caller. If on the other hand last does not
point to head, we can just use the previously loaded stamp.

All that remains is a simple CAS loop that tries to update tail’s stamp, as long as
the value we want to write is greater than the current value.

We still have to show that a node is only reclaimed when it is guaranteed that no
thread is holding a reference to it. Assume, without loss of generality, that thread t1
removes some node n from a data structure, fetches the current stamp from head, stores
this stamp value in n and adds n to its internal retire-list. n can safely be reclaimed
once all threads that were in a critical region at the time n was removed have left their
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respective critical region. tail’s stamp is less or equal to the stamp of the last thread. So
n’s stamp being less or equal to tail’s stamp implies that all threads currently inside a
critical region (if any) have entered their respective critical region after n was removed,
so n can safely be reclaimed.

When t1 adds n to its internal retire-list, it performs a sequentially consistent load
(12) to obtain the current stamp from head, and stores it in n. When t2 inserts itself
into the thread_order_queue, it performs a sequentially consistent fetch-add on head’s
stamp (2) and stores the returned value in its own block. Since both operations are
sequentially consistent, there is a total order. If the load (12) is ordered before the
fetch-add (2), it is clear that n was removed before t2 entered its critical region and
therefore t2 does not block the reclamation of n. If the fetch-add (2) is ordered before
the load (12), then the load will return the new stamp, which implies that n’s stamp
will be larger than t2’s stamp, so n can only be reclaimed once t2 has left its critical region.

What remains to be shown is that there exists a happens-before relation between the
reclaim operation and any changes made to the reclaimed node. A node can only be
accessed by a thread that is inside a critical region, so it suffices to show that there exists
a happens-before relation between the reclaim operation and any remove operation of a
thread with a lower stamp than the node that gets reclaimed.

To determinate if a node can be reclaimed, a thread obtains the stamp from tail
using an acquire-load (13). This load synchronizes-with the corresponding release-CAS
in update_tail_stamp (16), so in consequence we need a happens-before relation between
this release-CAS and the remove operations of all blocks that had a lower stamp than
the new stamp value. This relation will be established with the help of the prev list.

In the remove operation, the very first step is to set the delete mark on the block’s
prev pointer (9). This is done using an acquire-release-CAS operation. Any acquire-load
on that block’s prev pointer (15, 17, 18, 22, 26) that returns the marked value therefore
synchronizes-with the CAS. On the other hand, the acquire-semantics ensures that a
synchronize-with relation is established with any potential release operation (21, 28) that
updated that block’s prev as part of some earlier remove operation.

When a thread attempts to remove its block, there are two possible scenarios: Either
it removes the block itself, or some other thread removes it as part of its own remove
operation. Since we use the prev list to establish the required happens-before relation,
we only care about the removal of a block from the prev list.

When a thread removes itself from the prev list, it updates its predecessor’s prev
pointer using a release-CAS (21). So when that predecessor starts its own remove
operation, the acquire-CAS that sets the delete mark (9) synchronizes-with this release-
CAS (21).

In order for a block to be removed by some other thread, that thread has to recognize
that the block’s prev pointer is marked. In remove_from_prev_list we obtain prev’s
prev using a relaxed-load. If it has the mark flag set, we try to set the mark flag on next,
and if that is successful, we perform another acquire-load on prev (17). With regards to
next, we already use acquire-semantics when we load its prev value (18).
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In the remove_from_next_list operation we use acquire-semantics to load next’s
prev pointer (22). With regards to prev, we first perform an acquire-load on its next
(25), and if it has the mark flag set, we perform an additional acquire-load on prev (26).

So both CAS operations that remove a block from the prev list use release-semantics
(21, 28), and we always perform an acquire-load on the block’s prev pointer before we try
to remove it (17, 18, 22, 26). This results in a chain of synchronize-with relations between
the different operations on the prev pointers of the removed blocks. In update_tail_stamp
we first perform the load on tail’s next (14) to get the current predecessor of tail (we
refer to it as last), and then perform an acquire-load on last’s prev (15). Therefore,
this acquire-load (15) synchronizes-with the according release operation that was last
performed on that prev pointer (as well as any release sequences on that object). A block
that was a successor of last in prev direction will have removed itself by updating last’s
prev pointer using a release-CAS. Thus the acquire-load (15) establishes a happens-before
relation between the load and the removal of that block.

This also holds for the cases were we use the “next best guess” to update tail’s
stamp. We use the “next best guess” instead of last’s stamp in the following situations:

1. When tail already has a greater stamp.

2. When last’s prev does not point to tail.

3. When tail’s next has been updated since the first load.

4. When last is head and the update of head’s prev fails.

In the first case some other thread was faster, so there is nothing left to do. In the other
cases we cannot use last’s stamp, since we cannot be sure if it was tail’s predecessor at
the time we loaded the stamp value. However, we know that it must have been tail’s
predecessor at some point, because when we removed our own block we (or some other
thread) had to remove it from the next list by updating our predecessor in next direction
(i.e., tail). So the load of tail’s next (14) can either return the value we (or some other
thread) wrote as part of the remove operation for our block, or some newer value. But a
newer value could only be written by some other remove operation, or as the last step
of some push. Either way, it is guaranteed that (i) last points to a block that was the
immediate predecessor of tail at some point, and (ii) that it had a stamp value greater or
equal to our “next best guess” at that time. Therefore, we can safely use our “next best
guess” to update tail’s stamp, because the acquire-load of last’s prev still establishes
the required happens-before relation.

Together with the release-CAS that updates tail’s stamp (16), we finally have the
happens-before relations between the reclamation of a node and the remove operations
of all blocks that had a lower stamp.
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4.5 Data structures

The following chapters describe the three lock-free data structures that were implemented
and used in the benchmarks.

4.5.1 Lock-Free List-based Set

This is an implementation of Harris’ list-based set [Har01]. It is based on the improved
implementation by Michael [Mic02], but adapted to the previously described interface
to allow the use of arbitrary reclamation schemes. The data structure is based on a
totally-ordered set of keys, implemented as a sorted singly linked list. However, I will
not go into too much detail about the algorithm itself, but focus on the usage of the
reclamation scheme and the semantics of the atomic operations.

The definition of the list class is shown in Listing 4.48. The private section contains
some boilerplate code that defines a few aliases for concurrent_ptr, marked_ptr and
guard_ptr to make the rest of the code more readable.

Listing 4.48: Definition of list class
1 template <class Key, class Reclaimer>
2 class list
3 {
4 public:
5 list() = default;
6 ~list();
7
8 bool search(Key key);
9 bool remove(Key key);

10 bool insert(Key key);
11
12 private:
13 struct node;
14
15 using concurrent_ptr = typename Reclaimer::template concurrent_ptr<node, 1>;
16 using marked_ptr = typename concurrent_ptr::marked_ptr;
17 using guard_ptr = typename concurrent_ptr::guard_ptr;
18
19 struct node : Reclaimer::template enable_concurrent_ptr<node, 1>
20 {
21 const Key key;
22 concurrent_ptr next;
23 node(Key k) : key(std::move(k)), next() {}
24 };
25
26 concurrent_ptr head;
27
28 struct find_info
29 {
30 concurrent_ptr* prev;
31 marked_ptr next;
32 guard_ptr cur;
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33 guard_ptr save;
34 };
35 bool find(Key key, find_info& info, detail::backoff& backoff);
36 };

The find method (shown in Listing 4.49) is the centerpiece of the data structure; all
other methods are built on top of it. It performs a linear search and returns a boolean
value indicating whether a node with a matching key was found. In either case, by its
completion, it guarantees that the find_info structure has captured a snapshot of a
segment of the list including the node (if any) that contains the lowest key value greater
than or equal to the input key, as well as a reference to the predecessor’s next pointer.
During the traversal of the list, whenever a marked node is encountered, it attempts to
remove the node from the list using a CAS operation. If successful, the removed node is
marked for reclamation.

Upon return, the snapshot in find_info holds the following values:

• prev holds a reference to the concurrent_ptr referencing cur. This can either be a
reference to head or to the next pointer of some other node that is the predecessor
of cur.

• cur holds a safe reference to the first node with a key value greater than or equal
to the input key. If the list is empty, cur is set to nullptr.

• next holds a reference to the successor of cur (if any).

• save holds a safe reference to the predecessor of cur (if any).

The traversal requires at most two guard_ptrs at any time: one that references the current
node (find_info.cur), if any, and that references its predecessor (find_info.save), if
any [Mic04a].

Listing 4.49: Implementation of list::find
1 template <class Key, class Reclaimer>
2 bool list<Key, Reclaimer>::find(Key key, find_info& info, detail::backoff& backoff)
3 {
4 retry:
5 info.prev = &head;
6 info.next = info.prev->load(std::memory_order_relaxed);
7 info.save.reset();
8
9 for (;;)

10 {
11 // (1) - this acquire-load synchronizes-with the release-CAS (3, 4, 6)
12 if (!info.cur.acquire_if_equal(*info.prev, info.next, std::memory_order_acquire))
13 goto retry;
14
15 if (!info.cur)
16 return false;
17
18 info.next = info.cur->next.load(std::memory_order_relaxed);
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19 if (info.next.mark() != 0)
20 {
21 // Node *cur is marked for deletion -> update the link and retire the element
22
23 // (2) - this acquire-load synchronizes-with the release-CAS (3, 4, 6)
24 info.next = info.cur->next.load(std::memory_order_acquire).get();
25
26 // Try to splice out node
27 marked_ptr expected = info.cur.get();
28 // (3) - this release-CAS synchronizes with the acquire-load (1, 2)
29 // it is the head of a potential release sequence containing (5)
30 if (!info.prev->compare_exchange_weak(expected, info.next,
31 std::memory_order_release,
32 std::memory_order_relaxed))
33 {
34 backoff();
35 goto retry;
36 }
37 info.cur.reclaim();
38 }
39 else
40 {
41 if (info.prev->load(std::memory_order_relaxed) != info.cur.get())
42 goto retry; // cur might be cut from list.
43
44 Key ckey = info.cur->key;
45 if (ckey >= key)
46 return ckey == key;
47
48 info.prev = &info.cur->next;
49 info.save = std::move(info.cur);
50 }
51 }
52 }

The insert operation (shown in Listing 4.50) first creates a new node with the given key.
It then continuously calls find to check if another node with the same key is already
part of the list. If that is the case, the newly created node is deleted and the function
returns false. Otherwise, it sets the new nodes next pointer to find_info.next and
attempts to insert the new node before find_info.cur by performing a CAS operation
on find_info.prev. If the CAS operation succeeds, then we have successfully inserted
the node and therefore return true. Otherwise we restart the loop with a new call to
find.

Listing 4.50: Implementation of list::insert
1 template <class Key, class Reclaimer>
2 bool list<Key, Reclaimer>::insert(Key key)
3 {
4 node* n = new node(std::move(key));
5 find_info info;
6 detail::backoff backoff;
7 for (;;)
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8 {
9 if (find(key, info, backoff))

10 {
11 delete n;
12 return false;
13 }
14 // Try to install new node
15 marked_ptr cur = info.cur.get();
16 n->next.store(cur, std::memory_order_relaxed);
17
18 // (4) - this release-CAS synchronizes with the acquire-load (1, 2)
19 // it is the head of a potential release sequence containing (5)
20 if (info.prev->compare_exchange_weak(cur, n,
21 std::memory_order_release,
22 std::memory_order_relaxed))
23 return true;
24
25 backoff();
26 }
27 }

The remove operation (shown in Listing 4.51) continuously calls find to check if the
list contains a node with a matching key. If that is not the case it immediately returns
false as there is nothing to do. Otherwise it performs a CAS operation to set the mark
bit on cur->next. This mark bit serves two purposes: on the one hand it signals other
threads that this node should be removed from the list, and at the same time it prevents
other threads to update cur->next with a CAS operation (e.g., in an attempt to insert a
node). If it fails to set the mark bit it simply restarts the loop. Otherwise it attempts
yet another CAS to update prev with next, effectively removing cur from the list. If
that CAS operation succeeds, it can thus mark cur for reclamation. Otherwise some
other thread has interfered and it is not known if prev is the actual predecessor of cur.
So it simply performs another call to find with the same key, causing a traversal of the
list that removes any marked nodes, including cur in case it has not yet been removed
by some other thread.

Listing 4.51: Implementation of list::remove
1 template <class Key, class Reclaimer>
2 bool list<Key, Reclaimer>::remove(Key key)
3 {
4 detail::backoff backoff;
5 find_info info;
6 // Find node in list with matching key and mark it for reclamation.
7 do
8 {
9 if (!find(key, info, backoff))

10 return false; // No such node in the list
11 // (5) - this CAS operation is part of a release sequence headed by (3, 4, 6)
12 } while (!info.cur->next.compare_exchange_weak(info.next,
13 marked_ptr(info.next.get(), 1),
14 std::memory_order_relaxed));
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15
16 // Try to splice out node
17 marked_ptr expected = info.cur;
18 // (6) - this release-CAS synchronizes with the acquire-load (1, 2)
19 // it is the head of a potential release sequence containing (5)
20 if (info.prev->compare_exchange_weak(expected, info.next,
21 std::memory_order_release,
22 std::memory_order_relaxed))
23 info.cur.reclaim();
24 else
25 // Another thread interfered -> rewalk the list to ensure reclamation of marked

node before returning.
26 find(key, info, backoff);
27
28 return true;
29 }

4.5.1.1 Correctness

Michael already showed in [Mic04a] that only two hazard pointers are required to ensure a
safe and correct execution of the algorithm. My implementation closely follows Michael’s,
except that I replaced the hazard pointers with the more generic guard_ptrs, so I will
not provide any arguments in this regard.

What remains to be shown, however, is the correctness of the implementation with
regards to the used memory semantics. In particular, we have to show that there is a
happens-before relation between the insertion of a node and any subsequent access to
the node’s key, i.e.:

t1: n->key.store
hb−−−→ t2: cur->key.load

insert creates a new node and sets key as well as next before it performs the CAS
operation that inserts that node into the list (4.34). It uses release semantics for the
CAS operation to ensure the required happens-before relation.

t1 : n->key.store sb−−→ n->next.storerlx
sb−−→ prev->cmpxchg_weak(4)

rel︸ ︷︷ ︸
insert

(4.34)

remove marks the next pointer of the returned node (if any) using a CAS operation and
then tries to update the next pointer of the node’s predecessor using another CAS (4.35).

t1 : cur->next.cmpxchg_weak(5)
rlx

sb−−→ prev->cmpxchg_weak(6)
rel︸ ︷︷ ︸

remove

(4.35)

find uses acquire semantics to obtain the guard_ptr to cur and then performs a relaxed
load on cur’s next pointer. If it encounters that cur is marked, it performs another
load of next, but this time using acquire semantics, and then attempts a release-CAS to
remove the node from the list. Otherwise, it reads the node’s key (4.36); this is the load
operation for which we have to show that it happens after the initial store.
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In most cases it is sufficient to use a relaxed load for next, as in the next iteration
this is the value that is then used as the expected value in the call to acquire_if_equal,
which in turn uses acquire semantics. However, when a marked node is encountered we
have to perform an additional acquire-load to ensure a proper happens-before relation as
explained later.

if cur is marked:

t1 : prev->load(1)
acq

sb−−→ cur->next.load(2)
acq

sb−−→ prev->cmpxchg_weak(3)
rel︸ ︷︷ ︸

find

if cur is not marked:

t1 : prev->load(1)
acq

sb−−→ cur->key.load︸ ︷︷ ︸
find

(4.36)

Since the insert function uses a release-CAS to insert the new node (4.34), in the simplest
case the acquire-load operation in find synchronizes with that release-CAS (4.37).

t1: prev->cmpxchg_weak
(4)
rel︸ ︷︷ ︸

insert

sw−−−→ t2: prev->load(1)
acq︸ ︷︷ ︸

find

=⇒

t1: n->key.store︸ ︷︷ ︸
insert

hb−−−→ t2: cur->key.load︸ ︷︷ ︸
find

(4.37)

However, things get a little more complicated when remove operations come into play.
We have a release-CAS operation in find (3) and another one in remove (6) that remove a
marked node from the list. When the acquire-load (1) in find reads the value written by
one of those two operations, it therefore synchronizes with the respective CAS operation
(4.38).

t1: prev->cmpxchg_weak
(3)
rel︸ ︷︷ ︸

find

rf−−−→ t2: prev->load(1)
acq︸ ︷︷ ︸

find

=⇒

t1: prev->cmpxchg_weak
(3)
rel

sw−−−→ t2: prev->load(1)
acq

t1: prev->cmpxchg_weak
(6)
rel︸ ︷︷ ︸

remove

rf−−−→ t2: prev->load(1)
acq︸ ︷︷ ︸

find

=⇒

t1: prev->cmpxchg_weak
(3)
rel

sw−−−→ t2: prev->load(1)
acq

(4.38)

That leaves only the CAS operation that marks the next pointer of the node to be removed.
This one uses memory_order_relaxed, but since it is a read-modify-write operation, it
is part of a release sequence headed by the CAS operation that wrote the pointer’s
last value, i.e., either the release-CAS in insert (4) that inserts a node, or one of the
release-CAS in find (3) or remove (6) that remove a node from the list.

Once a pointer is marked, it is guaranteed that its value will not change for the rest
of the node’s lifetime. So when find encounters a marked node, it can simply perform
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a reload of next with acquire semantics to establish a happens-before relation with the
CAS operation that heads the release sequence (4.39).

t1: prev->cmpxchg_weak
(4)
rel︸ ︷︷ ︸

insert

[t2: prev->cmpxchg_weak
(5)
rlx︸ ︷︷ ︸

remove

] sw−−−→ t3: prev->load(2)
acq︸ ︷︷ ︸

find

t1: prev->cmpxchg_weak
(3)
rel︸ ︷︷ ︸

find

[t2: prev->cmpxchg_weak
(5)
rlx︸ ︷︷ ︸

remove

] sw−−−→ t3: prev->load(2)
acq︸ ︷︷ ︸

find

t1: prev->cmpxchg_weak
(6)
rel︸ ︷︷ ︸

remove

[t2: prev->cmpxchg_weak
(5)
rlx︸ ︷︷ ︸

remove

] sw−−−→ t3: prev->load(2)
acq︸ ︷︷ ︸

find

(4.39)

There can be an arbitrary number of concurrent insert and remove operations, leading
to a combination of all the described synchronize-with relations engaging with each other,
eventually establishing a happens-before relation between the initialization of a node’s
key and any subsequent access to that key by some other thread.

4.5.2 Lock-Free Queue

This is an implementation of a lock-free queue based on the proposal by Michael and
Scott [MS96]. It implements the queue as a singly-linked list with head and tail pointers.
head always points to a dummy node, which is the first node in the list, and tail points to
either the last or second last node in the list. The nodes are connected via next pointers,
so the first node that actually contains a value is the one pointed to by head.next.

The definition of the queue class is shown in Listing 4.52. The private section contains
some boilerplate code that defines a few aliases for concurrent_ptr, marked_ptr and
guard_ptr to make the rest of the code more readable.

Listing 4.52: Definition of queue class.
1 template <class T, class Reclaimer>
2 class queue {
3 public:
4 queue();
5 ~queue();
6
7 void enqueue(T value);
8 bool try_dequeue(T& result);
9 private:

10 struct node;
11
12 using concurrent_ptr = typename Reclaimer::template concurrent_ptr<node, 0>;
13 using marked_ptr = typename concurrent_ptr::marked_ptr;
14 using guard_ptr = typename concurrent_ptr::guard_ptr;
15
16 struct node : Reclaimer::template enable_concurrent_ptr<node>
17 {
18 T value;
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19 concurrent_ptr next;
20 };
21
22 alignas(64) concurrent_ptr head;
23 alignas(64) concurrent_ptr tail;
24 };

The enqueue operation (shown in Listings 4.53) first creates the new node before it enters
a loop to insert this node into the linked list. In the loop it first reads the tail pointer
and checks if tail’s next pointer is null. If that is not the case some other thread has
inserted a node, but did not yet update tail, i.e., tail is pointing to the second last
node. So we try to help the other thread finishing its operation and then retry to insert
our own node. Otherwise we can perform a CAS operation to insert our node. If the
CAS is successful we have inserted our node, but we still need to perform another CAS to
update tail to point to our newly inserted node. However, we can safely ignore a failure
of this last CAS, as this would just mean that another thread was faster in helping to
update tail.

Listing 4.53: Implementation of queue::enqueue
1 template <class T, class Reclaimer>
2 void queue<T, Reclaimer>::enqueue(T value)
3 {
4 node* n = new node{};
5 n->value = std::move(value);
6
7 detail::backoff backoff;
8
9 guard_ptr t;

10 for (;;)
11 {
12 // Get the old tail pointer.
13 t.acquire(tail, std::memory_order_relaxed);
14
15 // Help update the tail pointer if needed.
16 auto next = t->next.load(std::memory_order_relaxed);
17 if (next.get() != nullptr)
18 {
19 marked_ptr expected(t.get());
20 tail.compare_exchange_weak(expected, next, std::memory_order_relaxed);
21 continue;
22 }
23
24 // Attempt to link in the new element.
25 marked_ptr null{};
26 // (1) - this release-CAS synchronizes-with the acquire-load (2).
27 if (t->next.compare_exchange_weak(null, n, std::memory_order_release,
28 std::memory_order_relaxed))
29 break;
30
31 backoff();
32 }
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33
34 // Swing the tail to the new element.
35 marked_ptr expected = t.get();
36 tail.compare_exchange_strong(expected, n, std::memory_order_relaxed);
37 }

The try_dequeue operation (shown in Listing 4.54) tries to remove the node pointed to
by head from the linked list. Since head always points to a dummy node we are actually
interested in the value of the node pointed by head.next. If the remove operation
succeeds, the next node’s value is written to the result out-parameter, the next node
now becomes the new dummy node pointed to by head and the function returns true.
Otherwise the function returns false and result remains unchanged.

In the implementation we first acquire a guard_ptr to head and then another
guard_ptr to the head’s next. Before continuing, we check if head has changed in
the meantime, in which case we have to restart. The acquired guard to next being null
means that the queue is empty, thus we simply return false. Otherwise we check if
head equals tail, and if that is the case, there must be a pending enqueue operation
that inserted the node, but did not yet update tail. So we help with that and restart
from the beginning. If head is not equal to tail we can read next’s value and try a
CAS operation to set head to next, effectively removing the node currently pointed to by
head. Thus, if the CAS operation is successful, we can mark the old dummy node for
reclamation and return true.

Listing 4.54: Implementation of queue::try_dequeue
1 template <class T, class Reclaimer>
2 bool queue<T, Reclaimer>::try_dequeue(T& result)
3 {
4 detail::backoff backoff;
5
6 guard_ptr h;
7 for (;;)
8 {
9 // Get the old head and tail elements.

10 h.acquire(head, std::memory_order_relaxed);
11
12 // Get the head element’s successor.
13 // (2) - this acquire-load synchronizes-with the release-CAS (1).
14 auto next = acquire_guard(h->next, std::memory_order_acquire);
15 if (head.load(std::memory_order_relaxed).get() != h.get())
16 continue;
17
18 // If the head (dummy) element is the only one, return false to signal that
19 // the operation has failed (no element has been returned).
20 if (next.get() == nullptr)
21 return false;
22
23 marked_ptr t = tail.load(std::memory_order_relaxed);
24
25 // There are multiple elements. Help update tail if needed.
26 if (h.get() == t.get())
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27 {
28 tail.compare_exchange_weak(t, next, std::memory_order_relaxed);
29 continue;
30 }
31
32 // Save the data of the head’s successor. It will become the new dummy node.
33 result = next->value;
34
35 // Attempt to update the head pointer so that it points to the new dummy node.
36 marked_ptr expected(h.get());
37 if (head.compare_exchange_weak(expected, next, std::memory_order_relaxed))
38 break;
39
40 backoff();
41 }
42
43 // The old dummy node has been unlinked, so reclaim it.
44 h.reclaim();
45
46 return true;
47 }

4.5.2.1 Correctness

The correctness of this algorithm was already shown by Michael [MS96]. What remains
to be shown, however, is that our usage of the reclamation scheme is correct and, since
we use the weaker acquire/release semantics, that there is a happens-before relation
between the enqueue operation adding a node and a try_dequeue operation removing the
same node. Or, to be more precise, that there is a happens-before relation between the
operation that writes the value into the node (line 5 in Listing 4.53) and the operation
that reads that value (line 33 in Listing 4.54).

The enqueue operation acquires a guard_ptr on tail, which allows us to safely access
to the next pointer and eventually perform the CAS to insert the new node; the guard_ptr
is held until the operation returns, thus ensuring that it can not be reclaimed.

The try_dequeue operation acquires a guard_ptr on head, which again allows us to
safely access next, for which we acquire yet another guard_ptr, so we can safely read
next->value. try_dequeue requires two guard_ptrs, because for non-empty lists it always
operates on two nodes: the dummy node currently pointed to by head as well as the node
with the actual value, and therefore both nodes have to be protected from reclamation.

Regarding the happens-before relation we have to show that:

t1: n->value.store
hb−−−→ t2: n->value.load()

enqueue stores the value in the newly created node before it performs the CAS operation
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that inserts that node into the queue (4.40).

t1 : n->value.store sb−−→ t->next.cmpxchg_weak(1)
rel︸ ︷︷ ︸

enqueue

(4.40)

t2 : h->next.load(2)
acq

sb−−→ next->value.load()︸ ︷︷ ︸
try_deuque

(4.41)

The next pointer of newly created nodes is initialized with nullptr and it can only be
updated once. It thus follows that there are only two possible scenarios when some thread
reads next: either the returned value is nullptr, then the queue appears to be empty
for this thread (4.42), or the returned value is a valid pointer, then the acquire-load in
try_dequeue synchronizes-with the release-CAS in enqueue (4.43).

t1: n->next.store(nullptr)︸ ︷︷ ︸
initialization of n

rf−−−→ t2: h->next.load(2)
acq =⇒

Thread t2 reads null, so the queue appears to be empty.
(4.42)

t1: t->next.cmpxchg_weak
(1)
rel

rf−−−→ t2: h->next.load(2)
acq =⇒

t1: t->next.cmpxchg_weak
(1)
rel

sw−−−→ t2: h->next.load(2)
acq =⇒

t1: t->next->value.store
hb−−−→ t2: h->next->value.load()

(4.43)

It is therefore sufficient to use acquire/release semantics for the operations on the next
pointers, all other atomic operations can be fully relaxed.

4.5.3 Lock-Free Hash Map

This is an implementation of a lock-free hash map based on the proposed algorithm by
Michael [Mic02]. It is basically a container with a fixed number of list-based sets (as
described above) where each list-based set represents a bucket.

However, the interface is slightly different because the benchmark that uses this hash
map stores rather big data in it, so we want to be able to access the data directly. For
this reason the interface does not return a copy of the data, but a guard_ptr to the
internal node. This way the user can access the node’s key and value without copying it
as the guard_ptr protects the node from being reclaimed, even if it got removed from
the hash map in the meantime.

The definition of the hash_map class is shown in Listing 4.55.

Listing 4.55: Definition of hash_map class.
1 template <class Key, class Value, class Reclaimer, size_t Buckets>
2 class hash_map
3 {
4 public:
5 struct node;
6
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7 private:
8 using concurrent_ptr = typename Reclaimer::template concurrent_ptr<node, 1>;
9 using marked_ptr = typename concurrent_ptr::marked_ptr;

10
11 public:
12 hash_map() = default;
13 ~hash_map();
14
15 using guard_ptr = typename concurrent_ptr::guard_ptr;
16
17 struct node : Reclaimer::template enable_concurrent_ptr<node, 1>
18 {
19 public:
20 const Key key;
21 const Value value;
22 private:
23 concurrent_ptr next;
24 node(Key k, Value v) : key(std::move(k)), value(std::move(v)), next() {}
25 friend class hash_map;
26 };
27
28 guard_ptr search(Key key);
29 bool insert(Key key, Value value);
30 bool insert(Key key, Value value, guard_ptr& entry);
31 bool remove(Key key);
32
33 private:
34 concurrent_ptr buckets[Buckets];
35
36 struct find_info
37 {
38 concurrent_ptr* prev;
39 marked_ptr next;
40 guard_ptr cur;
41 guard_ptr save;
42 };
43 bool find(Key key, concurrent_ptr& head, find_info& info, detail::backoff& backoff);
44 };

It is quite similar to the definition of the list based set (see Listing 4.48), the main
difference is that the node and guard_ptr definitions are public and that search and
insert have different signatures; search returns a guard_ptr to the node and there is an
overload for insert that has an additional out-parameter of type guard_ptr that is set
to the newly created node when the insert operation succeeds.

4.6 Benchmarks

I have implemented the same set of list and queue micro-benchmarks that Hart et
al. describe in [HMBW07]. While my implementation differs in several aspects, I tried to
keep it close enough so that the results should be roughly comparable.

127



The tests are set up as follows. The main thread spawns N child threads and starts
a timer. Every child thread performs operations on the data structure that is currently
being measured until the timer expires. Upon timer expiry the child threads are stopped
and the parent thread calculates the average execution time per operation by summing
up the runtime of each child thread and its number of performed operations.

The following parameters can be set for every benchmark:

-reclaimer – the reclamation scheme that shall be used in the benchmark.

-threads – the number of threads that will concurrently perform benchmark operations.
The default value is 4.

-trials – the number of trials the benchmark shall be executed. The default value is 8.

-runtime – the runtime of each trial in milliseconds. The default value is 10000.

-memory-samples – the number of samples that shall be taken during the runtime of a
single trial. The default value is zero, i.e., by default this feature is disabled. When
this is set to a value greater than zero, additional samples are automatically taken
at the beginning (before threads are given the start signal) and at the end (after
all threads have signaled that they are finished) of a trial. Therefore, when this
parameter is set to n, for each trial a total of n + 2 samples are taken with an
average runtime of runtime/(n + 1) milliseconds between two consecutive samples.

There are a number of additional benchmark specific parameters which are described in
the following chapters.

The experiments are throughput oriented in the following sense. The main thread
spawns p child threads and waits from them to signal that they are fully initialized and
ready to start. Once all threads are ready, the main thread starts a timer and sets a
global start flag. Every child thread performs operations on the data structure under
scrutiny. Upon timer expiry the main thread clears the global flag and waits for all child
threads to stop. Then it calculates the average execution time per operation by summing
up the runtime of each child thread and its number of performed operations.

When the taking of memory samples has been activated, the main thread regularly
wakes up during the trial to gather some data and record it. This data consists of the
process’ resident set size (which corresponds to the used physical memory), the runtime,
and optionally the number of allocated and reclaimed nodes. The function that is used
to get the resident set size was taken from David Robert Nadeau [Nad12]. The recording
of allocated and reclaimed nodes is disabled by default, but can be activated by defining
the TRACK_ALLOCATIONS macro. When this is activated, the reclaimers will track the
number of constructions and destructions of all enable_concurrent_ptr instances. To
avoid contention between different threads, this is done using thread-local counters which
are connected via a linked list, to enable easy calculation of the total sum over all threads
when recording samples.

The function executed by each child thread consists of two nested loops, where
the outer loop continues as long as the global flag is set. The inner loop performs i
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iterations (i is benchmark specific) and in each iteration a benchmark specific operations
is performed. For the Queue and List benchmark, this inner loop is inside the scope of a
region_guard instance, thus allowing amortization of the costs of all the operations inside
the loop, in case the reclamation scheme supports it. A pseudocode implementation of
this inner loop is shown in Listing 4.56. When the inner loop finishes, the thread adds i
to a thread-local counter of the total number of performed operations and continues with
the next iteration of the outer loop.

Listing 4.56: Per-thread pseudocode for running a benchmark.
1 while (keep running flag is set)
2 {
3 region_guard region;
4 for i from 1 to n do
5 {
6 key = random key;
7 op = random operation;
8 d = data structure;
9 op(d, key);

10 }
11 }

For EBR and NEBR UpdateThreshold is set to 100, i.e., each thread tries to update the
global epoch after 100 critical region entries since it last observed a new epoch. The
threshold for the local retire-list in HPBR is calculated as 100 +

∑p
i=0 Ki ∗ 2 where p is

the number of threads and Ki is the number of hazard pointers for the thread with index
i. In case of the static_hazard_pointer_policy Ki is constant for all threads, which
simplifies the calculation. However, the dynamic_hazard_pointer_policy allows threads
to have a dynamic number of hazard pointers, so the calculation has to take this into
account. This is explained in more detail in Section 4.4.2.2.

4.6.1 GuardPtr benchmark

This benchmark is used to measure the base cost of creating and destroying guard_ptr
instances. The threads perform i = 100 iterations, where in each iteration a guard_ptr
instance to a single shared node is created and, since it is running out of scope, immediately
destroyed. The fact that all instances reference a single shared node represents the worst
case scenario for LFRC, while for all other schemes this is an irrelevant detail.

4.6.2 Queue benchmark

This is a synthetic micro-benchmark based on the queue data structure. The threads
perform i = 100 iterations and in each iteration performs a random push or pop operation.
Both operations have equal probability, thus the data structure size kept roughly constant
throughout a single trial.

The only possible parameter for this benchmark is --elements which defines the
number of elements the queue should be prefilled with.
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4.6.3 List benchmark

This is a synthetic micro-benchmark based on the list data structure. It supports the
following parameters:

-elements – defines the number of elements the list should be prefilled with. The default
value is 10.

-modify-fraction – defines the ratio of modify operations (i.e., insert and delete) to
all operations; in the remaining text this parameter is also referred to as workload.
The default value is 0.5.

The threads perform i = 100 iterations and in each iteration a random insert, remove
or search operation is performed. The probability for the modifying operations is set via
the command line parameter.

4.6.4 HashMap benchmark

This benchmark was inspired by a real-world application. Suppose you have an optimiza-
tion algorithm for a complex combinatorial problem with several hundred parameters.
The algorithm generates thousands of possible solutions that each have to be simulated
in order to calculate an objective, which the algorithm tries to maximize.

The simulation of a solution is quite complex and computationally intensive. Fortu-
nately, it is possible to split it into m smaller blocks which can be simulated independently,
thus producing m partial results. The total objective can then be calculated efficiently
based on these partial results. Unfortunately, it is not possible to incrementally calculate
the total objective, so all block results have to be accessible at the same time.

Each solution has a large number of parameters that can be varied, but not every
parameter influences every block. Thus, block results calculated for one solution may be
reused for other solutions. To improve efficiency of the simulation, these block results
are therefore cached.

Unfortunately, these block results are rather big, so we do not want to copy the whole
data block when we find a cache entry. Instead we want to get a safe reference (i.e., a
guard_ptr) to the cache entry itself. Since the block results require quite a lot of memory,
the total number of entries in the result-cache has to be limited. If the limit is exceeded,
the number of entries in the result-cache has to be reduced. For the reduction a simple
queue with the keys of all entries is used, resulting in a simple first-in-first-out policy.
The keys of newly inserted entries are pushed into the queue. To reduce the number of
entries in the result-cache, the next key is popped from the queue and the corresponding
entry is removed from the result-cache. This is repeated until the number of cached
entries no longer exceeds the limit.

Since all block results have to be accessible at the same time, this implies that they are
all blocked for reclamation. And since there is no upper bound on the number of blocks,
this problem cannot be solved with the classic hazard pointer scheme with a static number
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of hazard pointers. Instead, a variation with the dynamic_hazard_pointer_policy (see
Section 4.4.2.2) is used.

In contrast to the other benchmarks, this one uses two scopes, each with its own
region_guard. In the first one all the cache lookups and calculations are performed,
while the second one is used to reduce the size of the result-cache.

This is a highly simplified description of the original problem, but it suffices to create
a simple benchmark with similar properties that set this benchmark apart from the usual
micro-benchmarks:

• there is no upper bound on the number of nodes that are intentionally blocked
from reclamation,

• the average lifetime of each guard_ptr is relatively long compared to other use
cases, due to the fact that the computation of the final objective is computationally
intensive and has runtime complexity linear in the number of blocks,

• the memory footprint of each node is significant, putting additional pressure on
the reclamation scheme to reclaim nodes efficiently and in a timely manner.
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CHAPTER 5
Experimental Results &

Performance Analysis

This chapter presents the results from the performance analysis based on the benchmarks
described in Section 4.6. These benchmarks were used to investigate the performance
impact of various parameters like the number of threads, the workload or the traversal
length, as well as the schemes’ efficiency in reclaiming retired nodes. All experiments
were run on several machines with different architectures to compare their impact on
the performance of the various schemes. The CSV files with the raw results, as well as
the scripts to run the benchmark and to analyze the results are available on GitHub:
https://www.github.com/mpoeter/emr-benchmarks.

Unless stated otherwise, each benchmark was performed with 30 trials, each with
eight seconds runtime. Most of the benchmarks focus on performance and calculate
the average runtime of a single operation for each trial. Every thread calculates the
average operation runtime by dividing the overall runtime that it was actively running the
benchmark, by the total number of operations it performed. The total average runtime
per operation is then calculated as the average of these per-thread runtime values.

It is important to note that all 30 trials are performed sequentially within the same
process. This is especially important in case of the HashMap benchmark, as the hash-
map is retained over the whole runtime. This means that a result calculated in the first
trial can be found in the hash-map and reused in a subsequent trial. For this reason,
performance will be worse at the beginning, while the hash-map is in the “warm up
phase”, but will improve over time when it becomes filled and more items can be reused.
But it is also possible that in the other benchmarks previous trials have some impact on
later ones, e.g., due to an already initialized memory manager, left over orphans that can
now be adopted and reclaimed, etc. It was a deliberate design decision to run all trials
in the same process as this more closely reflects a real world situation.

Four machines with different (micro-)architectures were used to run the benchmarks.
A list of these machines with their respective specifications is shown in Table 5.1.
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Table 5.1: Machines

AMD

CPUs 4x AMD Opteron(tm) Processor 6168
Frequency max. 1.90GHz
Cores/CPU 12
SMT –
Hardware Threads 48
Memory 128GB
OS Linux 4.7.0-1-amd64 #1 SMP

Debian 4.7.6-1 (2016-10-07) x86_64 GNU/Linux
Compiler gcc version 6.3.0 20170205 (Debian 6.3.0-6)

Intel

CPUs 8x Intel(R) Xeon(R) CPU E7- 8850
Frequency max. 2.00GHz
Cores/CPU 10
SMT 2x
Hardware Threads 160
Memory 1TB
OS Linux 4.7.0-1-amd64 #1 SMP

Debian 4.7.6-1 (2016-10-07) x86_64 GNU/Linux
Compiler icpc version 17.0.1 (gcc version 6.0.0 compatibility)

XeonPhi

CPUs 1x Intel(R) Xeon Phi(TM) coprocessor x100 family
Frequency max. 1.33GHz
Cores/CPU 61
SMT 4x
Hardware Threads 244
Memory 16GB
OS Linux 2.6.38.8+mpss3.8.1 #1 SMP

Thu Jan 12 16:10:30 EST 2017 k1om GNU/Linux
Compiler icpc version 17.0.1 (gcc version 5.1.1 compatibility)

SPARC

CPUs 4x SPARC-T5-4
Frequency max. 3.60GHz
Cores/CPU 16
SMT 8x
Hardware Threads 512
Memory 1TB
OS SunOS 5.11 11.3 sun4v sparc sun4v
Compiler gcc version 6.3.0 (GCC)

On all platforms the standard memory manager from libc was used, except on Sparc,
where I used jemalloc [Eva06]. The reason for this is that the libc implementation of
malloc and free in Solaris uses a global lock. Newer versions of Solaris bring their own
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scalable memory manager libumem1. Tests with libumem started promising, but soon
revealed sporadic but severe performance drops when running with about 200 threads or
more. I suspect these issues to be caused by large numbers of cross-thread deallocations.
These performance issues and their analysis is described in more detail in Section 5.6.

5.1 Lock-Free reference counting
As described in Section 4.4.1, LFRC has been implemented with two extensions: an
optional padding to avoid false sharing between the reference counter and other data
members, and an optional local free list with a bounded number of entries. This analysis
compares the performance of different configurations in various scenarios. To this
end, all the previously described benchmarks have been run with four different LFRC
configurations on all the machines; the results are shown in the Figures 5.1, 5.2, 5.3 and
5.4. The following variations of LFRC were used:

• unpadded – the original LFRC proposal without padding.

• padded – the original LFRC proposal with padding to avoid false sharing between
the reference counter and the node’s payload.

• unpadded-20 – like unpadded, but with a local free list with max 20 entries.

• padded-20 – like padded, but with a local free list with max 20 entries.

The results are quite interesting as there is no overall “best” configuration. Instead,
the performance of the different configurations varies with both, the data structure as
well as the CPU architecture. However, in almost all cases at least one of the other
configurations is significantly faster than the original, unpadded LFRC.

LFRC is often criticized for its bad performance, but as the results show there is
some potential to improve that. One of the main reasons LFRC’s performance suffers
lies in the fact that in order to acquire a safe reference to some node n, a thread has to
increment a shared counter in n, and again decrement the counter when the reference
is dropped. So many threads performing increment/decrement operations on the same
node lead to high contention and potential cache misses. This problem lies in the nature
of how LFRC works, so there is not really room for improvement here. The only possible
attempt is to reduce the number of cache misses by inserting the appropriate padding
between the reference counter and the node’s payload; especially Intel benefits from this
approach.

But as can be seen from the results, in some cases also the internal free-list can cause
significant performance issues that can be reduced by using a small thread-local free-list;
especially on XeonPhi. For future work it might be interesting to investigate this further,
e.g., whether FIFO/LIFO approaches for the thread-local and/or the global free list
perform differently, as well as other approaches that would potentially reduce contention
on the global free-list like, e.g., letting push and pop operate on separate lists.

1https://blogs.oracle.com/ahl/number-11-of-20:-libumem
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Figure 5.1: Performance comparison of different LFRC configurations with the Queue
benchmark.
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Figure 5.2: Performance comparison of different LFRC configurations with the List
benchmark 10 elements and a workload of 20%.

5.2 Stamp-it base performance

As previously described, the adapted version of Stamp-it does not provide an upper bound
on the number of steps for entering or leaving a critical region. This section presents
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Figure 5.3: Performance comparison of different LFRC configurations with the List
benchmark 10 elements and a workload of 80%.
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Figure 5.4: Performance comparison of different LFRC configurations with the HashMap
benchmark.

the results of an analysis for the effective average number of steps for each operation.
The stamp_it implementation has been extended with optional thread-local performance
counters that keep track of the number of retries in push and remove, thus allowing
to calculate the average number of iterations per operation. Since the data structure
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is based on a doubly linked list, the remove operation builds on two other operations
remove_from_prev and remove_from_next to remove the node from both directions; the
number of retries for these two operations is measured separately. The performance
counters are disabled by default and can be enabled by defining the WITH_PERF_COUNTER
macro.

The benchmarks were run as previously described, but instead of average time per oper-
ation the average number of iterations in push, remove_from_prev and remove_from_next
has been measured. The results for the various benchmarks are shown in Figures 5.5,
5.6, 5.7, 5.8 and 5.9.
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Figure 5.5: Mean number of iterations for the respective operations in the GuardPtr
benchmark.

The GuardPtr benchmark is the most interesting, since this is kind of a “stress test”,
i.e., it simulates the worst case scenario where all threads just insert and immediately
remove themselves from the thread_order_queue. Essentially, this scenario tests the
scalability of the thread_order_queue data structure itself. As can be seen in Figure 5.5,
the average number of iterations is less than the number of threads in all cases, suggesting
that even in this worst case scenario the expected average runtime complexity is O(p).

Interestingly, the behavior differs significantly between the various architectures. For
AMD, Intel and the XeonPhi the results are dominated by the number of iterations in
remove_from_prev. On XeonPhi the number of iterations in push increases significantly
once the number of threads is greater than 120. The reason for this is probably the SMT
based architecture with 61 physical cores and the way instructions are scheduled [Rah13].
For SPARC the situation is the complete opposite: The number of threads has almost
no impact on the number of iterations in the remove-methods, instead the number of
iterations in push is increasing, but varies significantly.
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Figure 5.6: Mean number of iterations for the respective operations in the Queue
benchmark.
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Figure 5.7: Mean number of iterations for the respective operations in the List benchmark
with a workload of 20%.

It is likewise interesting to see how the data structure performs under “normal”
conditions. As can be seen in Figures 5.6, 5.7, 5.8 and 5.9, which give results for the
Queue, List and HashMap benchmarks, the number of threads has almost no measurable
impact on the number of iterations for all three methods: The numbers are virtually
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Figure 5.8: Mean number of iterations for the respective operations in the List benchmark
with a workload of 80%.
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Figure 5.9: Mean number of iterations for the respective operations in the HashMap
benchmark.

constant, with a few outliers in the HashMap benchmark (shown in Figure 5.9). There is
small increase in the number of iterations in the remove-methods on all platforms around
4-16 threads that decreases again with a growing number of threads.
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5.3 Base costs

This analysis measures the base costs of the schemes. The experiments are performed with
a single thread to eliminate contention on the used data structure, so resulting performance
differences are caused solely by the overhead of creating and releasing guard_ptr instances.
It also includes the GuardPtr benchmark (described in Section 4.6.1) to measure the pure
overhead of creating and releasing a guard_ptr instances without any other operations
involved.

All benchmarks except HashMap were run on all machines using a single thread,
30 trials and eight seconds runtime. The results are shown in Figure 5.10; “List reads”
corresponds to the List benchmark with a workload of 0% (i.e., read-only) and “List
writes” corresponds to the List benchmark with a workload of 100% (i.e., all operations
are either insert or delete). The number of elements for the List and Queue benchmarks
was left at the default value of 10.

The HashMap benchmark was excluded here because in comparison to the other
benchmarks it has a very high runtime dominated by the simulated calculations; the
overhead for allocating and releasing guard_ptr’s is rather irrelevant. The reclamation
schemes still have a very big impact on the performance of the HashMap benchmark, but
mainly due to the difference in how efficiently retired nodes can actually be reclaimed.
This aspect is discussed in more detail in Section 5.7. Stamp-it performs very poorly in
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Figure 5.10: Base costs of the various schemes in single thread runs.

the GuardPtr benchmark, due to the more expensive operations to insert and remove the
thread from the internal queue. But the results show that there is hardly any trace of
this overhead in the other benchmarks; in some cases it is the fastest of all schemes. This
is due to the fact that, just like NEBR and QSBR, Stamp-it also uses the region_guard
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concept to amortize the cost of these insert and remove calls over a larger number of
operations.

What can also be seen is that there are significant differences between Sparc and
the Intel based architectures. On Sparc, LFRC is significantly slower than HBPR. The
results of the other benchmarks will corroborate this observation.

5.4 Scalability with workload
This analysis uses the List benchmark to examine the workload’s impact on the reclama-
tion schemes by gradually increasing the read-to-update ratio of the performed operations
from read-only to update-only.

When pure read-only operations are used, no nodes get reclaimed, so the schemes only
differ in the performance overhead of acquiring and releasing the necessary guard_ptr
instances. With an increasing number of update operations, the performance overhead for
acquiring and releasing the guard_ptr instances stays the same (we still have to search
the list the same way as for read-only operations). But the more update operations are
performed (specifically delete operations), the more impact on the overall performance is
caused by the reclamation of retired nodes. The benchmark was run in four different
configurations:

• one thread; one element (see Figure 5.11)

• one thread; 25 elements (see Figure 5.12)

• 32 threads; one element (see Figure 5.13 and 5.15)

• 32 threads; 25 elements (see Figure 5.14 and 5.16)

Each configuration was run with 30 trials and a runtime of eight seconds. For LFRC the
configuration with padding and a local free-list with 20 entries was used; based on the
results from Section 5.1 it seemed to be the overall best choice for this scenario. As
can be seen by the results of the various configurations, the workload by itself seems to
have no significant impact on the performance of the reclamation schemes; within each
configuration and architecture, all schemes exhibit roughly the same slope, i.e., the relative
performance difference between the schemes stays more or less the same, regardless of
the workload. Hart et al. came to the same conclusion in their experiments [HMBW07].
This is not entirely unexpected, since insert and remove operations still require the
same lookup to be performed as in a search operation. The only exception is LFRC,
which actually shows a performance improvement on Sparc in the configuration with one
element and 32 threads (see Figure 5.13), but it starts out with a huge gap to the other
schemes. It is not entirely clear why LFRC can improve its performance, but I suspect it
is due to the way of how LFRC reuses reclaimed nodes.

In the base cost analysis we saw that LFRC seems to incur a higher overhead on
the Sparc architecture. Figure 5.11 shows the results for the configuration with one
element and one thread. In this configuration HPBR performs worst in almost all
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Figure 5.11: Effect of varying workload on a lock-free list with one element, one thread.
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Figure 5.12: Effect of varying workload on a lock-free list with 25 elements, one threads.

cases, while LFRC on the other hand is almost always fastest, or at least on par with
the fastest scheme—with the exception of Sparc, where LFRC performs worse than
HPBR in virtually all scenarios. This pattern also emerges from the results of all other
configurations, which corroborates the observation from the base cost analysis that LFRC
performs worse on Sparc, and is thus less well suited for this architecture.

Naturally, LFRC performs significantly worse with a growing number of threads as
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Figure 5.13: Effect of varying workload on a lock-free list with one element, 32 threads.

0

20

40

0 0.01 0.02 0.05 0.1 0.25 0.5 0.75 1
workload

m
ea

n 
µ s

/o
p

AMD

0

10

20

30

0 0.01 0.02 0.05 0.1 0.25 0.5 0.75 1
workload

m
ea

n 
µ s

/o
p

Sparc

0

50

100

150

0 0.01 0.02 0.05 0.1 0.25 0.5 0.75 1
workload

m
ea

n 
µ s

/o
p

Intel

0

10

20

30

40

0 0.01 0.02 0.05 0.1 0.25 0.5 0.75 1
workload

m
ea

n 
µ s

/o
p

XeonPhi

LFRC HPBR EBR NEBR QSBR stamp

Figure 5.14: Effect of varying workload on a lock-free list with 25 elements, 32 threads.

can be seen in Figures 5.12 and 5.14. What is quite interesting, though, is that in the
scenario with a single element (see Figure 5.12), on Sparc the performance of LFRC is
actually increasing with a higher workload; the other schemes and architectures do not
show such an effect. Since these results are dominated by the rather bad performance of
LFRC, Figures 5.15 and 5.16 show the same results with LFRC excluded. What can be
seen in Figure 5.15 is that in the configuration with 32 threads and a single element, in the
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Figure 5.15: Effect of varying workload on a lock-free list with one element, 32 threads
without LFRC.
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Figure 5.16: Effect of varying workload on a lock-free list with 25 elements, 32 threads
without LFRC.

first scenarios, which have a low workload, on Sparc Stamp-it performs significantly worse
than the other schemes. But with an increased workload this performance difference
completely vanishes. The reason for this is the higher overhead in Stamp-it’s enter
and leave functions. With only a single element and a low workload, this overhead
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dominates the total work each thread is handling. By increasing the workload, this
overhead becomes much less relevant, while at the same time efficient reclamation of the
removed elements becomes more important. So in the scenarios with higher workload
Stamp-it shows much better performance. Obviously, an increased number of elements
also reduces the relevance of this overhead. The configuration with 32 threads and 25
elements even shows inversed results (see Figure 5.16); in this configuration Stamp-it
clearly outperforms all the other schemes on Sparc. Interestingly, the other architectures
are largely unaffected and show no such bias.

5.5 Scalability with traversal length

The number of elements in a list can also have an impact on how good the different
reclamation schemes perform. This analysis examines this impact by varying the number
of elements the list gets initialized with at the start of each trial from zero to 1000. It
is also run in four different configurations, each with 30 trials and a runtime of eight
seconds:

• one thread; workload of zero (i.e., read-only) (see Figure 5.17)

• one thread; workload of 50% (see Figure 5.18)

• 32 threads; workload of zero (i.e., read-only) (see Figures 5.19 and 5.21)

• 32 threads; workload of 50% (see Figure 5.20 and 5.22)
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Figure 5.17: Effect of varying traversal length on a read-only lock-free list with one
thread.
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Figure 5.18: Effect of varying traversal length on a lock-free list with one thread and a
workload of 50%.
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Figure 5.19: Effect of varying traversal length on a read-only lock-free list with 32 threads.

The single threaded results for a read-only list (see Figure 5.17) and a workload of
50% (see Figure 5.18) look almost identical. This corroborates the observations from the
previous analysis that the workload has no significant impact on the performance of the
reclamation schemes.

What can be seen from the results of the single thread configurations is that with
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Figure 5.20: Effect of varying traversal length on a lock-free list with 32 threads and a
workload of 50%.

an increasing traversal length the performance of LFRC and HPBR degrades. This
is expected since, due to their design, these schemes have a per-element overhead. It
is interesting, though, that this effect varies in intensity, depending on the respective
architecture.

When looking at the results of the 32 thread configurations (Figures 5.19 and 5.20),
LFRC’s runtime degrades dramatically—especially in the read-only case. Therefore
Figures 5.21 and 5.22 show the same results, but with LFRC excluded. From these
results one can see that in the read-only configuration the additional overhead of HPBR
is highly significant (at least on AMD and Intel), but becomes negligible when looking
at the results with 50% workload. Similar to the results discussed in the previous
Section, Stamp-it performs rather poorly on the read-only list with a small number of
elements (see Figure 5.21). With a larger number of elements, or an increased workload
(see Figure 5.22), its performance significantly improves so that in some configuration
on Sparc, it again clearly outperforms all other schemes. In the read-only configuration
(Figure 5.21) AMD and Intel show similar effects, but much less significant; XeonPhi
seems to be completely unaffected.

For the other schemes the results suggests that the traversal length has only a small
impact on their respective performance. This is not unexpected since EBR, NEBR,
QSBR and Stamp-it do not require per-element operations like HPBR or LFRC.
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Figure 5.21: Effect of varying traversal length on a read-only lock-free list with 32 threads
without LFRC.
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Figure 5.22: Effect of varying traversal length on a lock-free list with 32 threads and a
workload of 50% without LFRC.

5.6 Scalability with threads

This analysis studies the effect of increasing the number of threads that share a single
instance of some data structure, under the assumption that the number of threads is less
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or equal than the number of hardware threads (i.e., CPU cores including SMT). I did
not experiment with oversubscribed cores.

As already discussed, the libc implementation of malloc and free on Sparc uses a
global lock, therefore rendering it useless for this analysis. The first alternative would
have been libumem, which is part of all new Solaris versions, but it showed some severe
performance drops by a factor of ∼20 (in the Queue benchmark) to ∼250 (in the List
benchmark) in some trials. This happened only in these two benchmarks (i.e., the
HashMap benchmark was not affected), and only with Stamp-it when running with more
than 200 threads. The behavior was not deterministic, i.e., it only happened sporadically
and it did not always affect the same trials, but it could be reproduced on a regular basis.

Unfortunately, this phenomenon completely vanished when I tried to profile it with
the tools from the Solaris Development Studio. It was simply impossible to reproduce
this behavior when the collect tool was attached to the process. What the heap
statistics from this tool did show, though, was that Stamp-it reclaimed 5-30 times more
nodes than the other reclamation schemes (this aspect is analyzed in more detail in
Section 5.7). Other experiments showed that this issue could longer be reproduced
when the actual reclamation was disabled, i.e., the whole algorithm remained untouched,
only the delete_self call was disabled. These observations let me confidently conclude
that the problem was not the reclamation scheme itself, but the memory manager. In
particular I suspect the large number of cross-thread deallocations to be the cause of this
behavior.

In search of an alternative memory allocator I first tried Hoard [BMBW00], which
seems to have similar performance as libumem, but also showed performance drops of the
same magnitude; they occurred much less frequently though. TCMalloc [GM11] dropped
out since it does not support Sparc. Eventually I found jemalloc [Eva06], which does
support Sparc. It seems to be slightly slower, but showed robust performance without
any performance drops. Based on these observations I selected jemalloc since it seems
to be best suited for scenarios with such a large number of threads. However, I only
performed a very small set of tests that do not allow to draw a final conclusion. A more
in-depth analysis of various memory allocators for architectures with such a large number
of cores would be very interesting, but is outside the scope of this work. Figure 5.23
shows the performance of the reclamation schemes in the Queue benchmark. Surprisingly,
LFRC performs by far best on Sparc and on XeonPhi, but is by far worst on Intel. On
AMD, HPBR has a huge performance drop when running with the maximum number
of threads. A similar effect can be seen by the other schemes as well, but much less
significant. Apart from these exceptions, all schemes seem to scale largely equally good
in this scenario.

For the results of the List benchmark (Figures 5.24 and 5.25) LFRC has been excluded
since we already established that it performs poorly in this scenario, especially with a
larger number of threads. On AMD, Intel and XeonPhi all schemes are more or less on
par, but on Sparc EBR and NEBR show a significant degradation when the number of
threads grows beyond 128. What is surprising, though, is that in all those cases NEBR
constantly performs worse than EBR. This is quite unexpected, since NEBR was designed
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Figure 5.23: Performance of the Queue benchmark with varying number of threads.
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Figure 5.24: Performance of the List benchmark with 10 elements, a workload of 20%
and a varying number of threads (without LFRC).

to have less overhead than EBR. I did not investigate the reasons for this in more detail,
but one assumption is that this might be caused by a larger number of unsuccessful
attempts to update the global epoch, which is caused by NEBR’s design of larger critical
regions.

Finally, the results for the HashMap benchmark are shown in Figure 5.26. Obviously,
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Figure 5.25: Performance of the List benchmark with 10 elements, a workload of 80%
and a varying number of threads (without LFRC).
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Figure 5.26: Performance of the HashMap benchmark with varying number of threads.

QSBR scales very poorly in this scenario and therefore its performance is very bad on
all the architectures. The results with QSBR excluded are shown in Figure 5.27. On
AMD, EBR, NEBR and Stamp-it scale almost perfectly, while LFRC’s and HPBR’s
performance starts to degrade once the number of threads grows beyond 16. On Intel,
LFRC scales very poorly while all other schemes scale more or less equally good, but not
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Figure 5.27: Performance of the HashMap benchmark with varying number of threads
(without QSBR).

as good as on AMD. On XeonPhi on the other hand, LFRC scales best, while HPBR’s
performance starts degrading with more than 16 threads, but it again improves with more
than 128 threads. The other schemes continuously lose performance when the number of
threads grows from 16 to ∼80, but then stays more or less the same. But the biggest
surprise are obviously the results on Sparc. Here, the runtime of HBPR, EBR and NEBR
degrades dramatically and shows significant variance, while LFRC and Stamp-it scale
almost perfectly. With 512 threads the performance difference between LFRC/Stamp-it
and the other schemes is a factor of ∼4000. The reason for this will become clear when
we look at the results of the reclamation efficiency analysis in the next section.

5.7 Reclamation efficiency

This analysis focuses on how efficiently (fast) the various reclamation schemes actually
reclaim retired nodes. An increased reclamation efficiency can drastically reduce mem-
ory pressure, which in turn can have a significant impact on the overall performance.
Nonetheless, this aspect is usually disregarded in most analyses of concurrent reclamation
schemes.

To measure reclamation efficiency I have implemented the previously described
allocation tracking—there are thread-local performance counters that track the number
of allocated and reclaimed nodes. By calculating the difference we get the number
of unreclaimed nodes, which is our measurement for efficiency; a smaller number of
unreclaimed nodes means that the reclamation scheme works more efficiently.
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The plots in this analysis show the development of the number of unreclaimed nodes
over time. Each configuration is run with five trials, each with a runtime of eight seconds.
During each trial a total of 50 samples are collected, including the additional samples at
the beginning and the end of each trial. Therefore a sample is recorded approximately
every 163ms. Since the benchmarks are randomized, each configuration with the five
trials is run 20 times to account for any fluctuation in the measured samples. The plots
show the smoothed conditional means of the measured samples of those 20 runs over the
number of samples recorded during each run.

For reclamation efficiency, reference counting is the “golden standard”. In contrast
to other schemes there is no delay: A node is reclaimed immediately when the last
thread drops its reference to that node. So in all the plots, LFRC can bee seen as the
baseline against which all other schemes have to be measured. One has to keep in mind,
though, that LFRC is not a general reclamation scheme, since the reclaimed nodes are
not returned to the memory manager, but stored in the internal free-list.

The results are shown in Figures 5.28, 5.29, 5.30, and 5.31. What can be seen in all
scenarios is that HPBR’s efficiency is inversely proportional to the number of threads.
This is due to the fact that the threshold for the number of unreclaimed nodes is quadratic
in the number of threads as explained in Section 2.4. This is the case even for the Queue
benchmark (Figure 5.28) and List benchmarks (Figures 5.29 and 5.30), even though
the number of hazard pointers per thread is constant. In the HashMap benchmark
(Figure 5.31) a dynamic number of hazard pointers is used, which makes the situation
even worse.

The implementation allows to customize the calculation of this threshold, so for future
work it might be interesting to analyse how a different threshold would affect reclamation
efficiency and what impact this would have on the performance.

In the Queue and List benchmarks on AMD we can see a small bump in the number
of unreclaimed nodes during the first trial for all reclamation schemes except LFRC and
HPBR. After the first trial they all recover and perform comparably for the rest of the
benchmark. It is not clear what causes this behavior as I did not investigate further.

Apart from this behavior and the previously described issue of HPBR with a large
number of threads, the results for the Queue and List benchmarks are not too surprising;
all schemes perform more or less comparably. In the Queue benchmark QSBR performs
somewhat worse on Intel and XeonPhi, but this is not unexpected as QSBR is less well
suited for update heavy scenarios.

In the HashMap benchmark (Figure 5.31) we can see that QSBR basically fails
completely to reliably reclaim nodes on all the architectures. The number of nodes is
constantly increasing and does not even go down at the end of the trials when all threads
are stopped. This is also the reason why QSBR showed such bad performance in the
previous analysis in Section 5.6.

For HPBR we can also see a consistent increase in the number of unreclaimed nodes
over time, even though this number sharply drops right at the beginning of a new trial,
but also increases again very rapidly. The only exception is Sparc, where no such drop
occurs and the number of nodes is increasing all the time. The other schemes all perform
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Figure 5.28: Number of unreclaimed of nodes over time in the Queue benchmark.
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Figure 5.29: Number of unreclaimed nodes over time in the List benchmark with 10
elements and a workload of 20%.
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Figure 5.30: Number of unreclaimed nodes over time in the List benchmark with 10
elements and a workload of 80%.
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Figure 5.31: Number of unreclaimed nodes over time in the HashMap benchmark.
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Figure 5.32: Development of runtime over trials (i.e., time) in the HashMap benchmark.

relatively good on all architectures; the exception again being Sparc. On Sparc HPBR,
EBR, NEBR and QSBR are all performing equally bad. The number of unreclaimed
nodes is constantly increasing and does not even go down at the end of the trials when
all threads are stopped. This effect is probably caused by the fact that in these schemes
every thread is responsible for reclaiming its own retired nodes. In Stamp-it we know
if there is some other thread lagging behind, so we can add nodes to a global list and
let that thread take responsibility for reclaiming them. This allows Stamp-it to more
reliably reclaim nodes, especially at the end of each trial.

The failure to efficiently reclaim nodes increases memory pressure, which has a direct
impact on the runtime. Figure 5.32 shows the development of the runtime over the
five trials. On Sparc we can see that the runtime of HPBR, EBR, NEBR and QSBR
is increasing with each trial, while LFRC and Stamp-it is decreasing. On the other
architectures, runtime is decreasing for all schemes except QSBR. This would be the
expected behavior since more results can be reused once the hash-map has been filled.
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CHAPTER 6
Conclusion and Future Work

This thesis addresses the problem of efficient memory reclamation for concurrent data
structures on shared-memory system. Since this is a critical component in almost all
concurrent data structures, there already exists a substantial amount of work on this
topic. I have presented an extensive overview of the current state of the art on this
topic and introduced a new scheme called Stamp-it. I have also presented an adapted
version of the generalized C++ interface proposed by Robison [Rob13] and discussed the
implementations of six reclamation schemes, including Stamp-it, following this generalized
interface. As basis for the correctness arguments of the various implementations, a brief
introduction on the topic of memory models with a focus on the C++11 memory model
has been provided. Finally, I have presented a large scale experimental study, comparing
the performance of the implemented reclamation schemes on four different architectures
in various scenarios.

6.1 Conclusion

Memory reclamation is a critical component in almost all shared-memory, concurrent
data structures and algorithms. Naturally, there exists a large number of proposed
solutions, many of which have been presented in Chapter 2. With Stamp-it this thesis has
introduced a new general purpose memory reclamation scheme with attractive features.
To the best of my knowledge, this is the first non-reference counting based scheme that
does not have to scan all other threads to determine reclaimability of a node.

Publications on lock-/wait-free algorithms or data structures usually assume a se-
quentially consistent memory model in their explanations and correctness proofs; and
publications on memory reclamation schemes pose no exception in this regard. Never-
theless, the memory model is crucial when it comes to actually implementing such a
reclamation scheme; at least when you want to achieve best performance by avoiding
sequential consistency in cases where it is not required. This thesis provides a brief
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introduction to the topic of memory models, with a focus on the C++11 memory model.
The implementations are built using this model and, based on the defined semantics,
I have tried to tune performance by relaxing all atomic operations as far as possible
without sacrificing correctness. According correctness arguments for all implementations
have also been presented.

In many cases, the authors of publications on this topic do not provide access
to the implementations that were used in the experiments. And when they do, the
implementations are usually primarily for proof of concept and therefore highly simplified,
e.g., they assume a fixed number of threads, can only handle allocations of specific types,
or do not pay enough attention to the memory model (in the case where they care
about the memory model at all). For the implementations presented in this thesis I
have decided to diverge from this practice, and instead provide implementations that are
generic (i.e., can handle an arbitrary number of threads and arbitrary types), portable
and fully compliant with the C++ standard. In short, they are designed in a way that
should make them suitable to be used in real applications out-of-the-box. The full source
code is made available on GitHub (https://github.com/mpoeter/emr).

A large scale experimental study has been presented, comparing the performance of
the six implemented reclamation schemes on four different architectures (AMD, Intel,
XeonPhi and Sparc) in various scenarios using three lock-free data structures (queue,
list and hash-map). The used systems have hardware supported thread counts ranging
from 48 to 512, allowing me to run the experiments at a larger scale than usually seen
in publications on this topic. The empirical results show that Stamp-it matches or
outperforms the other analyzed reclamation schemes in almost all cases. In addition to
the usual throughput-oriented experiments I have also presented a number of experiments
that analyze the reclamation efficiency, i.e., how quickly retired nodes are actually getting
reclaimed. This aspect is often disregarded, but as the results of these experiments show
it can have a significant impact on the overall performance.

For the purpose of full transparency and easy reproducibility I have put all results,
together with the scripts that were used to run and analyze the experiments, on GitHub
as well (https://github.com/mpoeter/emr-benchmarks).

6.2 Future Work
For future work I plan to add more implementations of other reclamation schemes and
include them in the benchmark results. The first candidate for this is DEBRA [Bro15],
since it is one of the newer proposals that also provides all the properties laid out in
Section 4. I also want to extend the set of benchmarks to cover more data structures like
skip-lists or binary search trees.

With regards to Stamp-it, it might be interesting to look for other data structures
that could replace the doubly linked list, i.e., data structures that have less overhead
while providing all the required properties. In this context I might also try to relax some
of these properties (e.g., use a partial order instead of a strict order for thread entries) in
order to reduce contention on the data structure.
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