<div class="csl-bib-body">
<div class="csl-entry">Grass, D., Kress, M., Caulkins, J. P., Feichtinger, G., & Seidl, A. (2017). <i>Lanchester Model for Three-Way Combat</i> (No. 1; p. 54). http://hdl.handle.net/20.500.12708/146863</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146863
-
dc.description.abstract
Lanchester (1916) modeled combat situations between two opponents, where mutual attrition occurs continuously in time, by a pair of simple ordinary (linear) differential equations. The aim of the present paper is to extend the model to a conflict consisting of three parties. In particular, Lanchester's main result, i.e. his square law, is adapted to a triple fight. However, here a central factor - besides the initial strengths of the forces - determining the long run outcome is the allocation of each opponent's efforts between the other two parties. Depending on initial strengths, (the) solution paths are calculated and visualized in appropriate phase portraits. We are able identify regions in the state space where, independent of the force allocation of the opponents, always the same combatant wins, regions, where a combatant can win if its force allocation is
wisely chosen, and regions where a combatant cannot win itself but determine the winner by its forces allocation. As such, the present model can be seen as a forerunner of a dynamic game between three opponents.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Research Reports (Vienna University of Technology, Institute of Statistics and Mathematical Methods in Economics, Operations Research and Control Systems)
-
dc.subject
Modeling and Simulation
en
dc.subject
General Computer Science
en
dc.subject
system dynamics
en
dc.subject
Industrial and Manufacturing Engineering
en
dc.subject
Information Systems and Management
en
dc.subject
Management Science and Operations Research
en
dc.subject
Lanchester model
en
dc.subject
Square Law
en
dc.subject
three combatants
en
dc.title
Lanchester Model for Three-Way Combat
-
dc.type
Bericht
de
dc.type
Report
en
dc.relation.issn
2521-313x
-
dc.description.endpage
54
-
dc.type.category
Research Report
-
tuw.peerreviewed
false
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-1904-2393
-
dc.identifier.reportid
1
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.openairetype
Bericht
-
item.openairetype
Report
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E105-04 - Forschungsbereich Operations Research und Kontrollsysteme
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik