<div class="csl-bib-body">
<div class="csl-entry">Layer, T., Blaickner, M., Knäusl, B., Georg, D., Neuwirth, J., Baum, R. P., Schuchardt, C., Wiessalla, S., & Matz, G. (2015). PET image segmentation using a Gaussian mixture model and Markov random fields. <i>EJNMMI Physics</i>. https://doi.org/10.1186/s40658-015-0110-7</div>
</div>
Background: Classification algorithms for positron emission tomography (PET) images support computational treatment planning in radiotherapy. Common clinical practice is based on manual delineation and fixed or iterative threshold methods, the latter of which requires regression curves dependent on many parameters.
Methods: An improved statistical approach using a Gaussian mixture model (GMM) is proposed to obtain initial estimates of a target volume, followed by a correction step based on a Markov random field (MRF) and a Gibbs distribution to account for dependencies among neighboring voxels. In order to evaluate the proposed algorithm, phantom measurements of spherical and non-spherical objects with the smallest diameter being 8mm were performed at signal-to-background ratios (SBRs) between 2.06 and 9.39. Additionally 68Ga-PET data from patients with lesions in the liver and lymph nodes were evaluated.
Results: The proposed algorithm produces stable results for different reconstruction algorithms and different lesion shapes. Furthermore, it outperforms all threshold methods regarding detection rate, determines the spheres’ volumes more accurately than fixed threshold methods, and produces similar values as iterative thresholding. In a comparison with other statistical approaches, the algorithm performs equally well for larger volumes and even shows improvements for small volumes and SBRs. The comparison with experts’ manual delineations on the clinical data shows the same qualitative behavior as for the phantom measurements.
Conclusions: In conclusion, a generic probabilistic approach that does not require data measured beforehand is presented whose performance, robustness, and swiftness make it a feasible choice for PET segmentation.
en
dc.description.sponsorship
Austrian Federal Ministry for Transport, Innovation and Technology
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Open
-
dc.relation.ispartof
EJNMMI Physics
-
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
-
dc.subject
Expectation maximization
en
dc.subject
Markov random field
en
dc.subject
Positron emission tomography
en
dc.subject
Radiotherapy
en
dc.subject
Tumor segmentation
en
dc.title
PET image segmentation using a Gaussian mixture model and Markov random fields
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution 2.0 Generic
en
dc.rights.license
Creative Commons Namensnennung 2.0 Generic
de
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Seibersdorf Laboratories (Austria), Austria
-
dc.contributor.affiliation
Zentralklinik Bad Berka, Germany
-
dc.contributor.affiliation
Zentralklinik Bad Berka, Germany
-
dc.contributor.affiliation
Zentralklinik Bad Berka, Germany
-
dc.rights.holder
The Author(s) 2015
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
wb.publication.intCoWork
International Co-publication
-
dcterms.isPartOf.title
EJNMMI Physics
-
tuw.publication.orgunit
E389 - Institute of Telecommunications
-
tuw.publisher.doi
10.1186/s40658-015-0110-7
-
dc.identifier.eissn
2197-7364
-
dc.identifier.libraryid
AC11359450
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-57
-
tuw.author.orcid
0000-0002-8327-3877
-
tuw.author.orcid
0000-0003-1784-806X
-
dc.rights.identifier
CC BY 2.0
en
dc.rights.identifier
CC BY 2.0
de
wb.sci
true
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openaccessfulltext
Open Access
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E166 - Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften