The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.
en
dc.description.sponsorship
European Research Council under the European Union’s Seventh Framework Program
-
dc.description.sponsorship
ERC Grant Agreement
-
dc.description.sponsorship
EU Biodesign program
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Frontiers Media SA
-
dc.relation.ispartof
Frontiers in Bioengineering and Biotechnology
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.title
Connections Matter: Channeled hydrogels to improve vascularization
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
dc.contributor.affiliation
AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
dc.relation.grantno
FP/2007–2013
-
dc.relation.grantno
307701
-
dc.relation.grantno
262948
-
dc.rights.holder
2014 Muehleder, Ovsianikov, Zipperle, Redl and Holnthoner
-
dc.type.category
Review Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Frontiers in Bioengineering and Biotechnology
-
tuw.publication.orgunit
E308 - Institut für Werkstoffwissenschaft und Werkstofftechnologie
-
tuw.publisher.doi
10.3389/fbioe.2014.00052
-
dc.identifier.eissn
2296-4185
-
dc.identifier.libraryid
AC11359634
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-1089
-
tuw.author.orcid
0000-0001-5846-0198
-
tuw.author.orcid
0000-0003-1654-462X
-
tuw.author.orcid
0000-0001-6425-9028
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
crisitem.author.dept
E308-02-3 - Forschungsgruppe 3D Printing and Biofabrication
-
crisitem.author.dept
TU Wien, Österreich
-
crisitem.author.dept
E166 - Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften
-
crisitem.author.dept
AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austria
-
crisitem.author.orcid
0000-0001-5846-0198
-
crisitem.author.orcid
0000-0001-6425-9028
-
crisitem.author.parentorg
E308-02 - Forschungsbereich Polymer- und Verbundwerkstoffe