<div class="csl-bib-body">
<div class="csl-entry">Qin, X.-H., Ovsianikov, A., Stampfl, J., & Liska, R. (2014). Additive manufacturing of photosensitive hydrogels for tissue engineering applications. <i>BioNanoMaterials</i>. https://doi.org/10.1515/bnm-2014-0008</div>
</div>
-
dc.identifier.issn
2193-0651
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/1013
-
dc.description.abstract
Hydrogels are extensively explored as scaffolding materials for 2D/3D cell culture and tissue engineering. Owing to the substantial complexity of tissues, it is increasingly important to develop 3D biomimetic hydrogels with user-defined architectures and controllable biological functions. To this end, one promising approach is to utilize photolithography-based additive manufacturing technologies (AMTs) in combination with photosensitive hydrogels. We here review recent advances in photolithography-based additive manufacturing of 3D hydrogels for tissue engineering applications. Given the importance of materials selection, we firstly give an overview of water-soluble photoinitiators for single- and two-photon polymerization, photopolymerizable hydrogel precursors and light-triggered chemistries for hydrogel formation. Through the text we discuss the design considerations of hydrogel precursors and synthetic approaches to polymerizable hydrogel precursors of synthetic and natural origins. Next, we shift to how photopolymerizable hydrogels could integrate with photolithography-based AMTs for creating well-defined hydrogel structures. We illustrate the working-principles of both single- and two-photon lithography and case studies of their applications in tissue engineering. In particular, two-photon lithography is highlighted as a powerful tool for 3D functionalization/construction of hydrogel constructs with μm-scale resolution. Within the text we also explain the chemical reactions involved in two-photon-induced biofunctionalization and polymerization. In the end, we summarize the limitations of available hydrogel systems and photolithography-based AMTs as well as a future outlook on potential optimizations.
en
dc.language
English
-
dc.language.iso
en
-
dc.publisher
De Gruyter
-
dc.relation.ispartof
BioNanoMaterials
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
additive manufacturing technologies (AMT)
en
dc.subject
biofabrication
en
dc.subject
hydrogels, photopolymerization
en
dc.subject
tissue engineering
en
dc.subject
two-photon lithography
en
dc.title
Additive manufacturing of photosensitive hydrogels for tissue engineering applications
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.rights.holder
2014 by De Gruyter
-
dc.type.category
Review Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
BioNanoMaterials
-
tuw.publication.orgunit
E308 - Institut für Werkstoffwissenschaft und Werkstofftechnologie
-
tuw.publisher.doi
10.1515/bnm-2014-0008
-
dc.identifier.eissn
2193-066X
-
dc.identifier.libraryid
AC11359636
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-1095
-
tuw.author.orcid
0000-0001-5846-0198
-
tuw.author.orcid
0000-0002-3626-5647
-
tuw.author.orcid
0000-0001-7865-1936
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
item.languageiso639-1
en
-
item.openairetype
review article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_dcae04bc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E308-02-3 - Forschungsgruppe 3D Printing and Biofabrication
-
crisitem.author.dept
E308-02 - Forschungsbereich Polymer- und Verbundwerkstoffe