DC FieldValueLanguage
dc.contributor.advisorRauschenbeutel, Arno-
dc.contributor.authorScheucher, Michael-
dc.date.accessioned2020-06-30T04:10:56Z-
dc.date.issued2017-
dc.date.submitted2017-08-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-101288-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/10356-
dc.descriptionAbweichender Titel nach Übersetzung der Verfasserin/des Verfassers-
dc.description.abstractFür viele Anwendungen im Bereich der Quantentechnologie ist starke Kopplung zwischen Licht und Materie unverzichtbar. Sie ermöglicht zum Beispiel das Verbinden einzelner Knotenpunkte von großflächigen Quantennetzwerken und erlaubt es, eine deterministische Wechselwirkung zwischen einzelnen Photonen zu erzeugen. Starke Licht-Materie-Wechselwirkung wurde bereits in unterschiedlichen Systemen realisiert, unter anderem auch in optischen Resonatoren. Optische Bauelemente, die auf Resonatoren basieren, sind jedoch oft mit großen Verlusten verbunden, die für viele Anwendungen hinderlich sind. Um diese zu vermeiden, können sogenannte Flüstergalleriemoden-Resonatoren verwendet werden. Diese Resonatoren zeichnen sich nicht nur durch eine besonders hohe Güte und ein kleines Modenvolumen aus, sondern auch durch die hohe Effizienz beim Ein- und Auskoppeln von Licht. Außerdem treten aufgrund des starken transversalen Einschlusses des Lichts besondere Polarisationszustände auf, welche zu einer chiralen, d.h. richtungsabhängigen Wechselwirkung führen. Im Rahmen dieser Arbeit wurden zwei neuartige optische Bauelemente demonstriert, welche auf dieser chiralen Wechselwirkung zwischen einzelnen Atomen und einem Flüstergalleriemoden-Resonator basieren. Das Erste ist ein nichtlinearer Phasenschieber für einzelne Photonen. Dabei nutzen wir die Nichtlinearität eines einzelnen Atoms aus, um den größtmöglichen nichtlinearen Phasenschub von 180 Grad zwischen einzelnen Photonen und Photonenpaaren zu erzeugen. Zur Messung des Phasenschubs wurde die Dichtematrix des transmittierten Lichts mit Hilfe der Quantentomographie rekonstruiert. Darüber hinaus konnten wir zeigen, dass dieser Prozess Verschränkung zwischen den beiden, zuvor voneinander unabhängigen, Photonen erzeugt. Das zweite optische Element ist ein Zirkulator mit vier Eingängen, der Licht von einem Eingang jeweils zum nächsten weiterleitet. Dieses nichtreziproke Verhalten basiert auf der chiralen Kopplung zwischen dem Resonator und einem einzelnen Atom. Die Funktionsweise des Zirkulators wird durch das Atom gesteuert und kann invertiert werden, indem das Atom in einem anderen Spinzustand präpariert wird. Dies ermöglich es grundsätzlich, den Zirkulator in einer quantenmechanischen Überlagerung der beiden Richtungen zu betreiben. Außerdem wurden die nichtlinearen Eigenschaften der Zikulators untersucht. Dabei konnten wir zeigen, dass unser System auch als photonenzahlabhängiger Router eingesetzt werden kann. Die im Rahmen dieser Arbeit erzielten Ergebnisse stellen einen wichtigen Schritt hin zur Realisierung von neuartigen Komponenten zur faserintergrierten quantenmechanischen Informationsverarbeitung dar.de
dc.description.abstractThe realization of strong light-matter interaction is crucial for many applications in quantum science and quantum technology. In particular, it allows one to link individual nodes of a large-scale quantum network or to mediate deterministic photon-photon interactions, which are required for many quantum protocols. Strong light-matter interaction has been successfully demonstrated in different systems, including optical resonators. However, for being applicable to photonic quantum information processing high photon losses of existing implementations hamper many applications. One way to avoid these losses is to employ whispering-gallery-mode resonators, which, despite their ultra-high quality and small volume, allow extremely efficiently coupling to waveguides. Furthermore, the strong transverse confinement of the light in these structures gives rise to extraordinary polarization properties which cause chiral, i.e. direction-dependent, coupling between light and matter. In this thesis, I report on the realization of two novel photonic devices which are based on the chiral interaction between light circulating in a bottle microresonator and a single rubidium atom. The first device is a nonlinear phase shifter, that realizes a strong optical nonlinearity on the single photon level. This nonlinearity is based on the nonlinear response of a single atom, which is enhanced by the resonator. By performing quantum state tomography of the field passing the atom-resonator system, we demonstrate the maximal nonlinear phase shift of 180 degrees between the case where single or pairs of photons pass the resonator. Furthermore, we verify that this process creates entanglement between two previously independent photons. The second device is a four-port quantum circulator, which is formed by two fiber couplers and the resonator. The chiral coupling between the atom and the resonator then gives rise to nonreciprocal transmission properties. We also show that the operation direction of the circulator is controlled by the spin state of the atom and can be inverted. This, in principle allows one to prepare a superposition of the two circulator operation directions. Furthermore, we study the nonlinear performance of the demonstrated circulator. Here we observe that the system routs single photons to different ports as pairs of photons. The results presented in this thesis are important steps toward realizing new, fully fiber-integrated components for quantum information processing.en
dc.formatvi, 183 Seiten-
dc.languageEnglish-
dc.language.isoen-
dc.subjectHohlraum-Quantenelektrodynamikde
dc.subjectFlüstergaleriemodende
dc.subjectoptische Nichtlinearitätde
dc.subjectoptische Nichtreziprozitätde
dc.subjectcavity quantum electrodynamicsen
dc.subjectwhispering-gallery-modesen
dc.subjectoptical nonlinearityen
dc.subjectoptical nonreciprocityen
dc.titleSingle-atom cavity quantum electrodynamics with whispering-gallery-modes: single-photon nonlinearity and nonreciprocityen
dc.title.alternativeEinzelatom-Hohlraum-Quantenelektrodynamik mit Flüstergaleriemoden: Einzelphotonen-Nichtlinearität und -Nichtreziprozitätde
dc.typeThesisen
dc.typeHochschulschriftde
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
tuw.publication.orgunitE141 - Atominstitut-
dc.type.qualificationlevelDoctoral-
dc.identifier.libraryidAC13773679-
dc.description.numberOfPages183-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-101288-
dc.thesistypeDissertationde
dc.thesistypeDissertationen
item.languageiso639-1en-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.fulltextwith Fulltext-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
Appears in Collections:Thesis

Files in this item:

Show simple item record

Page view(s)

13
checked on Feb 18, 2021

Download(s)

47
checked on Feb 18, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.