<div class="csl-bib-body">
<div class="csl-entry">Brodinova, S., Zaharieva, M., Filzmoser, P., Ortner, T., & Breiteneder, C. (2018). Clustering of imbalanced high-dimensional media data. <i>Advances in Data Analysis and Classification</i>, 261–284. https://doi.org/10.1007/s11634-017-0292-z</div>
</div>
Media content in large repositories usually exhibits multiple groups of strongly varying sizes. Media of potential interest often form notably smaller groups. Such media groups differ so much from the remaining data that it may be worthy to look at them in more detail. In contrast, media with popular content appear in larger groups. Identifying groups of varying sizes is addressed by clustering of imbalanced data. Clustering highly imbalanced media groups is additionally challenged by the high dimensionality of the underlying features. In this paper, we present the imbalanced clustering (IClust) algorithm designed to reveal group structures in high-dimensional media data. IClust employs an existing clustering method in order to find an initial set of a large number of potentially highly pure clusters which are then successively merged. The main advantage of IClust is that the number of clusters does not have to be pre-specified and that no specific assumptions about the cluster or data characteristics need to be made. Experiments on real-world media data demonstrate that in comparison to existing methods, IClust is able to better identify media groups, especially groups of small sizes.
en
dc.description.sponsorship
Vienna Science and Technology Fund (WWTF)
-
dc.description.sponsorship
CompetenceCenters for Excellent Technologies (COMET)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Advances in Data Analysis and Classification
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Clustering
en
dc.subject
Imbalanced data
en
dc.subject
High-dimensional data
en
dc.subject
Media data
en
dc.subject
LOF
en
dc.title
Clustering of imbalanced high-dimensional media data
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.description.startpage
261
-
dc.description.endpage
284
-
dc.relation.grantno
ICT12-010
-
dc.relation.grantno
843550
-
dc.rights.holder
The Author(s) 2017
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Advances in Data Analysis and Classification
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
tuw.publisher.doi
10.1007/s11634-017-0292-z
-
dc.identifier.eissn
1862-5355
-
dc.identifier.libraryid
AC15320994
-
dc.description.numberOfPages
24
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-4789
-
tuw.author.orcid
0000-0002-8014-4682
-
tuw.author.orcid
0000-0003-0971-4790
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E193-06 - Forschungsbereich Interactive Media Systems
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E193-03 - Forschungsbereich Virtual and Augmented Reality
-
crisitem.author.orcid
0000-0002-8014-4682
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology