<div class="csl-bib-body">
<div class="csl-entry">Izmestiev, I. (2022, 0 0). <i>Discrete Laplacians and infinitesimal isometric deformations</i> [Conference Presentation]. Workshop on discrete geometric structures, Wien, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/113061
-
dc.description.abstract
It is a classical fact that the vertical component of an infinitesimal isometric deformation (IID)
of a paraboloid of revolution is a harmonic function. In this talk we prove a discrete analog: the
vertical component of an IID of a polyhedron inscribed in the paraboloid is a discrete harmonic
function, with respect to the cotangent Laplacian.
Similar, but less known is the fact that the radial component of an IID of a spherical domain
is an eigenfunction of the spherical Laplacian. We establish a discrete analog: the radial
component of an IID of an inscribed polyhedron is an eigenfunction of the discrete spherical
Laplacian.
The talk is based on a joint work with Roman Prosanov.
en
dc.language.iso
en
-
dc.subject
Mathematics Sciences
en
dc.title
Discrete Laplacians and infinitesimal isometric deformations
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.author.orcid
0000-0003-3173-7841
-
tuw.event.name
Workshop on discrete geometric structures
en
tuw.event.startdate
29-08-2022
-
tuw.event.enddate
02-09-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Izmestiev, Ivan
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0003-3173-7841
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie