<div class="csl-bib-body">
<div class="csl-entry">Höld, G. M. (2022). <i>Goodness of fit tests with estimated parameters</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2022.63406</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2022.63406
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/114679
-
dc.description.abstract
Goodness of fit tests are unparametrized tests and therefore cannot directly be used to test if a test sample originates from a given distribution family. One method of solving this problem is to estimate the parameters of the distribution family before applying the test statistic on the test sample. This approach is called goodness of fit test with estimated parameters. Goodness of fit tests with estimated parameters are not a well researched field in hypothesis testing, due to their strong dependency on the explicit distribution family and selected parameter estimation. This thesis investigates problematic points of goodness of fit tests with estimated parameters, such as the incompatibility of certain parameter estimations with certain test statistics and distribution families. The thesis further provides restrictions on the parameter estimations, which guarantee the applicability of goodness of fit tests with estimated parameters on location scale distribution families. The thesis further provides an evaluation of certain test statistics for both the goodness of fit and the goodness of fit with estimated parameters test case. The investigated test statistics are the Kolmogorov-Smirnov, Cramér-von-Mises, Anderson-Darling and Zhang tests, which are compared on basis of their test powers. Three parameter estimations are investigated in combination with multiple distribution families to provide an overview of the test statistics powers. The evaluation of the test statistics includes a comparison of the ranking of test statistics in the goodness of fit test case with and without estimated parameters. This comparison indicates that the ranking of the test powers in the test case without estimated parameters cannot directly be used to derive information on the test powers in the test case with estimated parameters.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Statistischer Test
de
dc.subject
p-Wert
de
dc.subject
Rang Test
de
dc.subject
Statistical test
en
dc.subject
p-value
en
dc.subject
rank test
en
dc.title
Goodness of fit tests with estimated parameters
en
dc.title.alternative
Anpassungstests mit geschätzten Parametern
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2022.63406
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Georg Manuel Höld
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik