<div class="csl-bib-body">
<div class="csl-entry">Jordan, G. (2009). <i>Strong-field ionization of few-electron systems with MCTDHF</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-32958</div>
</div>
This thesis describes the Multi-Configuration Time-Dependent Hartree-Fock (MCTDHF) method for solving the multi-electron time-dependent Schrödinger equation, and its application to strong laser physics.<br />In part one we outline the theory and practical implementation of the MCTDHF method. We define the term "correlation" as anything which goes beyond Hartree-Fock, and point out an efficient way of dealing with the numerical challenges correlation creates. This results in the MCTDHF ansatz, where the multi-electron wave function is expanded in a sum of Slater determinants, with time-dependent single-electron orbitals and coefficients. MCTDHF allows to systematically improve treatment of correlation, while reducing computational effort substantially. Our parallelized MCTDHF implementation makes calculations of up to 6 electrons feasible within a tolerable time range on the order of days. In principle, any Hamiltonian and any geometry can be fitted in our program framework. Originally, the method was developed for and applied to strong-field problems, such as ionization and high-harmonic generation (HHG), which are the topics of this work.<br />In part two, we investigate multi-electron effects on the strong-field ionization of molecules. We perform with MCTDHF the first calculation of this process both in 3D and with correlated electrons. Contrary to some experimental observations, we find that ionization increases with the size of the molecule in 3D. Further we show that simplified 1D models are misleading already at a qualitative level.<br />The third part deals with multi-electron dynamics in high-harmonic generation of molecules. Until recently, HHG was almost uniformly interpreted in terms of a single-active electron model, most notably within the strong-field approximation (SFA).<br />First we investigate the dependence of the re-colliding electron wave packet on electron correlation effects.<br />This is followed by an extensive in-depth analysis of HHG in molecules.<br />We calculate high harmonic spectra with MCTDHF for diatomic molecules with 2 and 4 active electrons, and compare the results with several simplifying models, all of which leave out multi-electron dynamics. In fact, none of them can qualitatively reproduce the multi-electron results.<br />By factorization of the total wave function into the ionic core and a single-electron orbital, we demonstrate explicitly that polarization dynamics of the multi-electronic core has to be taken into account. These findings dismiss any hope of single-electron based description of HHG in molecules. In the last and fourth part, we address a question from laser interaction with solids. To explain optical breakdown of dielectrics at very short pulse-lengths, the so-called ``forest fire'' mechanism was proposed, where a charged hole enhances laser ionization at neighboring atoms. Using a two-electron model of this process, we find however no evidence for hole-assisted laser ionization.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
zeitabhängiges Multikonfigurations-Hartree-Fock
de
dc.subject
Korrelation
de
dc.subject
Starkfeldionisation
de
dc.subject
Erzeugung von hohen Harmonischen
de
dc.subject
Attosekundenphysik
de
dc.subject
Mehrelektroneneffekte
de
dc.subject
Multi-Configuration Time-Dependent Hartree-Fock
en
dc.subject
correlation
en
dc.subject
strong-field ionization
en
dc.subject
high harmonic generation
en
dc.subject
attosecond physics
en
dc.subject
multi-electron effects
en
dc.title
Strong-field ionization of few-electron systems with MCTDHF
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Gerald Jordan
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Faber, Manfried
-
tuw.publication.orgunit
E387 - Institut für Photonik
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC07452402
-
dc.description.numberOfPages
127
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-32958
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.assistant.orcid
0000-0002-3572-5429
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.openairetype
doctoral thesis
-
item.mimetype
application/pdf
-
crisitem.author.dept
E387 - Institut für Photonik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik