<div class="csl-bib-body">
<div class="csl-entry">Vetyukov, Y., Gruber, P. G., & Krommer, M. (2016). Nonlinear model of an axially moving plate in a mixed Eulerian–Lagrangian framework. <i>Acta Mechanica</i>, <i>227</i>, 2831–2842. https://doi.org/10.1007/s00707-016-1651-0</div>
</div>
The final publication is available at Springer via <a href="https://doi.org/10.1007/s00707-016-1651-0" target="_blank">https://doi.org/10.1007/s00707-016-1651-0</a>.
-
dc.description.abstract
We consider finite deformations and bending of an elastic plate moving across a given domain. Velocities of the plate are kinematically prescribed at two parallel lines, which bound the region in the direction of motion. Inhomogeneity of the velocity profile at the exit from the domain results in planar deformations and out-of-plane buckling of the plate. The presented quasistatic analysis features a novel kinematic description, in which the coordinate in the direction of motion is a Eulerian one, while the displacements in transverse and the out-of-plane directions are modeled in a Lagrangian framework. The material volume is traveling across a finite element mesh, which is aligned to the boundaries of the domain. A concise mathematical formulation results in a robust numerical scheme without the need to solve the advection (transport) equation at each time step. The model is validated against solutions of a benchmark problem with a conventional Lagrangian finite element scheme. The approach is further demonstrated by modeling the time evolution of deformation of a moving plate.
en
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Acta Mechanica
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.title
Nonlinear model of an axially moving plate in a mixed Eulerian–Lagrangian framework