The design of developable surfaces is of fundamental importance for many applications in Computer Aided Geometric Design. The aim of this thesis is to derive different algorithms to approximate developable surfaces by cone spline surfaces, which are G"1 surfaces composed of segments of right circular cones. With a Hermite-like scheme a discrete set of generators plus tangent planes of a given developable surface is interpolated with smoothly joining cone pairs. In a second method a discrete set of osculating cones of the given developable surface is joined to an osculating cone spline surface. The approximation quality of the proposed methods is analyzed and the results are discussed for several examples. From the standpoint of higher geometry the use of the isotropic model of 3-dimensional Euclidean Laguerre geometry is natural. Cone spline surfaces appear as isotropic arc splines in this model. This gives valuable insight into the cone spline approximation algorithms presented above. Also, in this model it is possible to give an easy proof for an important theorem on osculating cone splines. Finally, the generalization of the planar osculating arc splines of Meek and Walton to 3-dimensional Euclidean 3-space is presented. An algorithm is given how to segment the given curve in order to minimize approximation errors. This segmentation algorithm is also illustrated by several examples.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Rotationskegel
de
dc.subject
Spline
de
dc.subject
Fläche
de
dc.subject
Raumkurve
de
dc.subject
Kreis
de
dc.title
Cone spline surfaces and spatial arc splines
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Stefan Leopoldseder
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Algebra und Diskrete Mathematik
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC02529137
-
dc.description.numberOfPages
75
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-12755
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.mimetype
application/pdf
-
item.openairetype
doctoral thesis
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie