<div class="csl-bib-body">
<div class="csl-entry">Giuseppe Cannizzaro, Haunschmid-Sibitz, L. A., & Toninelli, F. L. (2022). √ log t-Superdiffusivity for a Brownian particle in the curl of the 2D GFF. <i>Annals of Probability</i>, <i>50</i>(6), 2475–2498. https://doi.org/10.1214/22-AOP1589</div>
</div>
-
dc.identifier.issn
0091-1798
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135829
-
dc.description.abstract
The present work is devoted to the study of the large time behaviour of a critical Brownian diffusion in two dimensions, whose drift is divergence-free, ergodic and given by the curl of the 2-dimensional Gaussian free field. We prove the conjecture, made in (J. Stat. Phys. 147 (2012) 113–131), according to which the diffusion coefficient D(t)D(t) diverges as √logtlogt for t→∞t→∞. Starting from the fundamental work by Alder and Wainwright (Phys. Rev. Lett. 18 (1967) 988–990), logarithmically superdiffusive behaviour has been predicted to occur for a wide variety of out-of-equilibrium systems in the critical spatial dimension d=2d=2. Examples include the diffusion of a tracer particle in a fluid, self-repelling polymers and random walks, Brownian particles in divergence-free random environments and, more recently, the 2-dimensional critical Anisotropic KPZ equation. Even if in all of these cases it is expected that D(t)∼√logtD(t)∼logt, to the best of the authors’ knowledge, this is the first instance in which such precise asymptotics is rigorously established
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
INST MATHEMATICAL STATISTICS
-
dc.relation.ispartof
Annals of Probability
-
dc.subject
diffusion coefficients
en
dc.subject
Diffusion in random environment
en
dc.subject
Gaussian free field
en
dc.subject
Super-diffusivity
en
dc.title
√ log t-Superdiffusivity for a Brownian particle in the curl of the 2D GFF
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Warwick University
-
dc.description.startpage
2475
-
dc.description.endpage
2498
-
dc.relation.grantno
P 35428-N
-
dc.rights.holder
Toninelli Fabio E105-07
-
dc.type.category
Original Research Article
-
tuw.container.volume
50
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Stochastische Oberflächen: Wachstum und Universalität