<div class="csl-bib-body">
<div class="csl-entry">Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., & Dustdar, S. (2022). Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting. In <i>The Tenth International Conference on Learning Representations (ICLR 2022)</i>. The Tenth International Conference on Learning Representations, ICLR 2022, Unknown. https://doi.org/10.34726/2945</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135874
-
dc.identifier.uri
https://doi.org/10.34726/2945
-
dc.description.abstract
Accurate prediction of the future given the past based on time series data is of
paramount importance, since it opens the door for decision making and risk management
ahead of time. In practice, the challenge is to build a flexible but parsimonious
model that can capture a wide range of temporal dependencies. In this
paper, we propose Pyraformer by exploring the multi-resolution representation of
the time series. Specifically, we introduce the pyramidal attention module (PAM)
in which the inter-scale tree structure summarizes features at different resolutions
and the intra-scale neighboring connections model the temporal dependencies of
different ranges. Under mild conditions, the maximum length of the signal traversing
path in Pyraformer is a constant (i.e., O(1)) with regard to the sequence length
L, while its time and space complexity scale linearly with L. Extensive experimental
results show that Pyraformer typically achieves the highest prediction accuracy
in both single-step and long-range multi-step forecasting tasks with the
least amount of time and memory consumption, especially when the sequence is
long.
en
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
sparse attention
en
dc.subject
pyramidal graph
en
dc.subject
Transformer
en
dc.subject
time series forecasting
en
dc.subject
long-range dependence
en
dc.subject
multiresolution
en
dc.title
Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/2945
-
dc.contributor.affiliation
Ant Group
-
dc.contributor.affiliation
Ant Group
-
dc.contributor.affiliation
Ant Group
-
dc.contributor.affiliation
Ant Group
-
dc.contributor.affiliation
Shanghai Jiao Tong University, China
-
dc.contributor.affiliation
Ant Group
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Tenth International Conference on Learning Representations (ICLR 2022)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://iclr.cc/virtual/2022/oral/6828
-
tuw.linking
https://github.com/alipay/Pyraformer
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
dc.identifier.libraryid
AC17204195
-
dc.description.numberOfPages
20
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
The Tenth International Conference on Learning Representations, ICLR 2022
en
dc.description.sponsorshipexternal
Ant Group
-
dc.description.sponsorshipexternal
National Natural Science Foundation of China
-
dc.relation.grantnoexternal
Ant Research Program
-
dc.relation.grantnoexternal
U21B2013
-
tuw.event.startdate
25-04-2022
-
tuw.event.enddate
29-04-2022
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
unknown
-
tuw.event.presenter
Yu, Hang
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.mimetype
application/pdf
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
crisitem.author.dept
Ant Group
-
crisitem.author.dept
Ant Group
-
crisitem.author.dept
Ant Group
-
crisitem.author.dept
Ant Group
-
crisitem.author.dept
Shanghai Jiao Tong University
-
crisitem.author.dept
Ant Group
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering