<div class="csl-bib-body">
<div class="csl-entry">Berducci, L., & Grosu, R. (2022). Safe Policy Improvement in Constrained Markov Decision Processes. In T. Margaria & B. Steffen (Eds.), <i>Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles (ISoLA 2022), Proceedings, Part I</i> (pp. 360–381). Springer. https://doi.org/10.1007/978-3-031-19849-6_21</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135876
-
dc.description.abstract
The automatic synthesis of a policy through reinforcement learning (RL) from a given set of formal requirements depends on the construction of a reward signal and consists of the iterative application of many policy-improvement steps. The synthesis algorithm has to balance target, safety, and comfort requirements in a single objective and to guarantee that the policy improvement does not increase the number of safety-requirements violations, especially for safety-critical applications. In this work, we present a solution to the synthesis problem by solving its two main challenges: reward-shaping from a set of formal requirements and safe policy update. For the first, we propose an automatic reward-shaping procedure, defining a scalar reward signal compliant with the task specification. For the second, we introduce an algorithm ensuring that the policy is improved in a safe fashion, with high-confidence guarantees. We also discuss the adoption of a model-based RL algorithm to efficiently use the collected data and train a model-free agent on the predicted trajectories, where the safety violation does not have the same impact as in the real world. Finally, we demonstrate in standard control benchmarks that the resulting learning procedure is effective and robust even under heavy perturbations of the hyperparameters.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
reinforcement learning
en
dc.subject
safe policy improvement
en
dc.subject
formal specification
en
dc.title
Safe Policy Improvement in Constrained Markov Decision Processes
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
University of Potsdam, Germany
-
dc.contributor.editoraffiliation
TU Dortmund University, Germany
-
dc.relation.isbn
978-3-031-19849-6
-
dc.relation.doi
10.1007/978-3-031-19849-6
-
dc.relation.issn
0302-9743
-
dc.description.startpage
360
-
dc.description.endpage
381
-
dc.relation.grantno
FFG Projektnummer: 880811
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles (ISoLA 2022), Proceedings, Part I
-
tuw.container.volume
13701
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.book.chapter
21
-
tuw.publication.invited
invited
-
tuw.project.title
Autonomous-Driving Examiner
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.linking
https://arxiv.org/abs/2210.11259
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1007/978-3-031-19849-6_21
-
dc.description.numberOfPages
22
-
tuw.author.orcid
0000-0002-3497-6007
-
tuw.editor.orcid
0000-0002-5547-9739
-
tuw.editor.orcid
0000-0001-9619-1558
-
tuw.event.name
11th International Symposium on Leveraging Applications of Formal Methods (ISoLA 2022)
en
tuw.event.startdate
22-10-2022
-
tuw.event.enddate
30-10-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Rhodes
-
tuw.event.country
GR
-
tuw.event.presenter
Berducci, Luigi
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.grantno
FFG Projektnummer: 880811
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems