<div class="csl-bib-body">
<div class="csl-entry">Kanatbekova, M. (2022). <i>Edge data management with symbolic representation</i> [Diploma Thesis, Technische Universität Wien; University of L’Aquila]. reposiTUm. https://doi.org/10.34726/hss.2022.106716</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2022.106716
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135934
-
dc.description.abstract
Nowadays, Internet of Things (IoT) devices are used in various fields such as health-care, agriculture and smart cities. They continuously generate a large amount ofdata needed to be stored and analyzed. Preserving such data, especially image data,presents a challenge as storage resources are mostly limited. Techniques like real-time object detection have been applied to save only some information about theimage data. However, such techniques limit the possibilities of doing a broaderanalysis of image data. This problem underlines the importance of data compres-sion at the edge, the process in which the size of the data is reduced. It has a directinfluence on increasing network bandwidth and decreasing transmission latency.In this work, we present an online-lossy compression algorithm by means of asymbolic representation of image data. Lossy compression, unlike lossless compres-sion, allows a loss of original information to an allowable extent. Thus, only anapproximation of an image can be reconstructed back.The proposed method uses a modified Adaptive Brownian Bridge Aggregation(fABBA) algorithm to compress the selected Urban Tracker image data at the edge.We showed the importance and upper-lower bounds of hyper-parameters suitablefor image data and fixed the hash-map for online compression. Further, as for theanalysis part, we have compared the object detection from reconstructed images andoriginal (not compressed) images.Our results show that the compression algorithm achieves up to 30% reductionand has 0.886 mAP from object detection. Moreover, we showed that dependingon the image processing task, two adaptive hyper-parameters can have upper andlower bounds.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
data compression
en
dc.subject
IoT device
en
dc.subject
symbolic representation
en
dc.subject
edge compression
en
dc.subject
object detection
en
dc.title
Edge data management with symbolic representation
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2022.106716
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Meerzhan Kanatbekova
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.thesisinformation
University of L'Aquila
-
dc.contributor.assistant
Ilager, Shashikant Shankar
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC16700328
-
dc.description.numberOfPages
53
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0009-0007-0661-5937
-
tuw.assistant.orcid
0000-0003-1178-6582
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering