<div class="csl-bib-body">
<div class="csl-entry">Gerencsér, M., & Hairer, M. (2022). Boundary renormalisation of SPDEs. <i>Communications in Partial Differential Equations</i>, <i>47</i>(10), 2070–2123. https://doi.org/10.1080/03605302.2022.2109173</div>
</div>
-
dc.identifier.issn
0360-5302
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135974
-
dc.description.abstract
We consider the continuum parabolic Anderson model (PAM) and the dynamical Φ⁴ equation on the 3-dimensional cube with boundary conditions. While the Dirichlet solution theories are relatively standard, the case of Neumann/Robin boundary conditions gives rise to a divergent boundary renormalisation. Furthermore for Φ₃⁴ a ‘boundary triviality’ result is obtained: if one approximates the equation with Neumann boundary conditions and the usual bulk renormalisation, then the limiting process coincides with the one obtained using Dirichlet boundary conditions.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)