<div class="csl-bib-body">
<div class="csl-entry">Mohammadpour, R. (2022). <i>A Road To Compactness Through Guessing Models</i>. arXiv. https://doi.org/10.48550/ARXIV.2210.02514</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/135981
-
dc.description.abstract
The compactness phenomenon is one of the featured aspects of structuralism in mathematics. In simple and broad words, a compactness property holds in a structure if a related property is satisfied by sufficiently many substructures of that structure. With this phenomenon and its twin sibling "reflection", modern set theory has settled many mathematical statements left undecided by the conventionally accepted formalism of mathematics, ZFC. A broad research program investigates whether a notion of compactness can universe-widely emerge without running into contradictions.
These notes are a survey about guessing models whose existence provides intriguing compactness phenomena. Most of the results in the manuscript are well-known. We shall reformulate, generalise and expand some of them. We also present some known applications of guessing models and state some open problems.
en
dc.language.iso
en
-
dc.subject
Compactness,
en
dc.subject
Guessing Model
en
dc.subject
Proper Forcing Axiom (PFA)
en
dc.subject
Reflection
en
dc.title
A Road To Compactness Through Guessing Models
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
arXiv:2210.02514
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.linking
https://arxiv.org/abs/2210.02514
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.48550/ARXIV.2210.02514
-
dc.description.numberOfPages
27
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie