<div class="csl-bib-body">
<div class="csl-entry">Mohammadpour, R. (2022). <i>Specialising Trees With Small Approximations II</i>. ArXiv. https://doi.org/10.48550/ARXIV.2206.00612</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136040
-
dc.description.abstract
We show that the existence of a well-known type of ideals on a regular cardinal λ implies a compactness property concerning the specialisability of a tree of height λ with no cofinal branches. We also use Neeman's method of side conditions to show that the existence of such ideals is consistent with stationarily many appropriate guessing models. These objects suffice to extend the main theorem of \cite{mhpr_spe}: one can generically specialise any branchless tree of height κ++ with a <κ-closed, κ+-proper, and κ++-preserving forcing, which has the κ+-approximation property.
en
dc.language.iso
en
-
dc.subject
Tree
en
dc.subject
Special tree
en
dc.subject
Guessing model
en
dc.subject
Densely closed ideal
en
dc.title
Specialising Trees With Small Approximations II
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2206.00612
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.linking
https://arxiv.org/abs/2206.00612
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.48550/ARXIV.2206.00612
-
dc.description.numberOfPages
17
-
tuw.publisher.server
ArXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie