<div class="csl-bib-body">
<div class="csl-entry">Bodini, O., Genitrini, A., Gittenberger, B., Larcher, I., & Naima, M. (2021). Compaction for two models of logarithmic‐depth trees: Analysis and experiments. <i>Random Structures and Algorithms</i>, <i>61</i>(1), 31–61. https://doi.org/10.1002/rsa.21056</div>
</div>
-
dc.identifier.issn
1042-9832
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136051
-
dc.description.abstract
We are interested in the quantitative analysis of the compaction ratio for two classical families of trees: recursive trees and plane binary increasing trees. These families are typical representatives of tree models with a small depth. Once a tree of size n is compacted by keeping only one occurrence of all fringe subtrees appearing in the tree the resulting graph contains only (Formula presented.) nodes. This result must be compared to classical results of compaction in the families of simply generated trees, where the analogous result states that the compacted structure is of size of order (Formula presented.). The result about the plane binary increasing trees has already been proved, but we propose a new and generic approach to get the result. Finally, an experimental study is presented, based on a prototype implementation of compacted binary search trees that are modeled by plane binary increasing trees.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Random Structures and Algorithms
-
dc.subject
analytic combinatorics
en
dc.subject
binary search trees
en
dc.subject
common subexpression recognition
en
dc.subject
increasing trees
en
dc.subject
tree compaction
en
dc.title
Compaction for two models of logarithmic‐depth trees: Analysis and experiments