<div class="csl-bib-body">
<div class="csl-entry">Dominguez Corella, A., Jork, N. A., & Veliov, V. (2022). <i>On the solution stability of parabolic optimal control problems</i> (No. 2022–04). https://doi.org/10.34726/3063</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136141
-
dc.identifier.uri
https://doi.org/10.34726/3063
-
dc.description.abstract
The paper investigates stability properties of solutions of optimal control problems for semilinear parabolic partial differential equations. H¨older or Lipschitz dependence of the optimal solution on perturbations are obtained for problems in which the equation and the objective functional are affine with respect to the control. The perturbations may appear in both the equation and in the objective functional and may nonlinearly depend on the state and control variables. The main results are based on an extension of recently introduced assumptions on the joint growth of the first and second variation of the objective functional. The stability of the optimal solution is obtained as a consequence of a more general result obtained in the paper – the proved metric subregularity of the mapping associated with the system of first order necessary optimality conditions. This property also enables error estimates for approximation methods. Lipschitz estimate for the dependence of the optimal control on the Tikhonov regularization parameter is obtained as a by-product.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
Research Reports
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
optimal control
en
dc.subject
parabolic partial differential equations
en
dc.subject
Hölder subregularity
en
dc.title
On the solution stability of parabolic optimal control problems
en
dc.type
Report
en
dc.type
Bericht
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/3063
-
dc.relation.issn
2521-313X
-
dc.relation.grantno
I 4571-N
-
dc.type.category
Research Report
-
tuw.relation.ispartofseries
Research Reports
-
tuw.project.title
Regularität von Abbildungen - Theorie und Anwendungen
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.identifier.libraryid
AC17204252
-
dc.description.numberOfPages
32
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
dc.identifier.reportid
2022-04
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18ws
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairetype
research report
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik