<div class="csl-bib-body">
<div class="csl-entry">Drmota, M., Shamir, G., & Szpankowski, W. (2022). Sequential universal modeling for non-binary sequences with constrained distributions. <i>Communications in Information and Systems</i>, <i>22</i>(1), 1–38. https://doi.org/10.4310/CIS.2022.v22.n1.a1</div>
</div>
-
dc.identifier.issn
1526-7555
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136145
-
dc.description.abstract
Sequential probability assignment and universal compression go hand in hand. We propose sequential probability assignment for non-binary (and large alphabet) sequences with distributions whose parameters are known to be bounded within a limited interval. Sequential probability assignment algorithms are essential in many applications that require fast and accurate estimation of the maximizing sequence probability. These applications include learning, regression, channel estimation and decoding, prediction, and universal compression. On the other hand, constrained distributions introduce interesting theoretical twists that must be overcome in order to present efficient sequential algorithms. Here, we focus on universal compression for memoryless sources, and present a precise analysis for the maximal minimax and the (asymptotic) average minimax redundancy for constrained distributions. We show that our sequential algorithm based on modified Krichevsky–Trofimov (KT) estimator is asymptotically optimal up to 𝑂(1) for both maximal and average redundancies. In addition, we provide precise asymptotics of the minimax redundancy for monotone distributions which is a special case of the constrained distribution. This paper follows and addresses some challenges presented in [17] that suggested ‘results for the binary case lay the foundation to studying larger alphabets”.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
International Press
-
dc.relation.ispartof
Communications in Information and Systems
-
dc.subject
information theory
en
dc.subject
minimax redundancy
en
dc.subject
constrained distribution
en
dc.subject
analytic combinatorics
en
dc.title
Sequential universal modeling for non-binary sequences with constrained distributions
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
1
-
dc.description.endpage
38
-
dc.relation.grantno
F5002-N15
-
dcterms.dateSubmitted
2020-06-07
-
dc.type.category
Original Research Article
-
tuw.container.volume
22
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Formeigenschaften von planaren Karten und planare Graphen
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Communications in Information and Systems
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.publisher.doi
10.4310/CIS.2022.v22.n1.a1
-
dc.date.onlinefirst
2022-02-07
-
dc.identifier.eissn
2163-4548
-
dc.description.numberOfPages
38
-
tuw.author.orcid
0000-0002-4307-9180
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
crisitem.project.grantno
F5002-N15
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.orcid
0000-0002-4307-9180
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie