<div class="csl-bib-body">
<div class="csl-entry">Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., & Simonov, K. (2022). The Complexity of k-Means Clustering when Little is Known. In <i>Proceedings of the 39th International Conference on Machine Learning</i> (pp. 6960–6987). https://doi.org/10.34726/3070</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136182
-
dc.identifier.uri
https://doi.org/10.34726/3070
-
dc.description.abstract
In the area of data analysis and arguably even in machine learning as a whole, few approaches have been as impactful as the classical k-means clustering. Here, we study the complexity of k-means clustering in settings where most of the data is not known or simply irrelevant. To obtain a more fine-grained understanding of the tractability of this clustering problem, we apply the parameterized complexity paradigm and obtain three new algorithms for k-means clustering of incomplete data: one for the clustering of bounded-domain (i.e., integer) data, and two incomparable algorithms that target real-valued data. Our approach is based on exploiting structural properties of a graphical encoding of the missing entries, and we show that tractability can be achieved using significantly less restrictive parameterizations than in the complementary case of few missing entries.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of Machine Learning Research
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
nfpc
en
dc.subject
ParAI
en
dc.title
The Complexity of k-Means Clustering when Little is Known
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/3070
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
University of Warsaw, Poland
-
dc.relation.issn
2640-3498
-
dc.description.startpage
6960
-
dc.description.endpage
6987
-
dc.relation.grantno
Y1329-N
-
dc.relation.grantno
P31336-N35
-
dcterms.dateSubmitted
2022
-
dc.rights.holder
Copyright 2022 by the author(s)
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 39th International Conference on Machine Learning
-
tuw.container.volume
162
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Proceedings of Machine Learning Research
-
tuw.project.title
Parameterisierte Analyse in der Künstlichen Intelligenz
-
tuw.project.title
New Frontiers for Parameterized Complexity
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
dc.identifier.libraryid
AC17202815
-
dc.description.numberOfPages
28
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0001-8038-905X
-
tuw.author.orcid
0000-0003-1414-3507
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
39th International Conference on Machine Learning
en
dc.description.sponsorshipexternal
European Research Council (ERC)
-
dc.relation.grantnoexternal
714704
-
tuw.event.startdate
17-07-2022
-
tuw.event.enddate
23-07-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Baltimore
-
tuw.event.country
US
-
tuw.event.presenter
Ganian, Robert
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
University of Warsaw
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.orcid
0000-0002-7762-8045
-
crisitem.author.orcid
0000-0003-1414-3507
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)