<div class="csl-bib-body">
<div class="csl-entry">Schneider, U., & Tardivel, P. (2022). The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation. <i>Journal of Machine Learning Research</i>, <i>23</i>, 1–36. http://hdl.handle.net/20.500.12708/136337</div>
</div>
-
dc.identifier.issn
1532-4435
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136337
-
dc.description.abstract
We provide a necessary and sufficient condition for the uniqueness of penalized least-squares estimators whose penalty term is given by a norm with a polytope unit ball, covering a wide range of methods including SLOPE, PACS, fused, clustered and classical LASSO as well as the related method of basis pursuit. We consider a strong type of uniqueness that is relevant for statistical problems. The uniqueness condition is geometric and involves how the row span of the design matrix intersects the faces of the dual norm unit ball, which for SLOPE is given by the signed permutahedron. Further considerations based this condition also allow to derive results on sparsity and clustering features. In particular, we define the notion of a SLOPE pattern to describe both sparsity and clustering properties of this method and also provide a geometric characterization of accessible SLOPE patterns.
en
dc.language.iso
en
-
dc.publisher
MICROTOME PUBL
-
dc.relation.ispartof
Journal of Machine Learning Research
-
dc.subject
Polytope
en
dc.subject
Penalized Estimation
en
dc.subject
SLOPE
en
dc.subject
Uniqueness
en
dc.subject
Sparsity
en
dc.subject
Clustering
en
dc.subject
Regularization
en
dc.subject
Geometry
en
dc.title
The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.scopus
21-0420
-
dc.contributor.affiliation
University of Wrocław, Poland
-
dc.description.startpage
1
-
dc.description.endpage
36
-
dcterms.dateSubmitted
2021-04
-
dc.type.category
Original Research Article
-
tuw.container.volume
23
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Journal of Machine Learning Research
-
tuw.publication.orgunit
E105-02 - Forschungsbereich Ökonometrie und Systemtheorie
-
dc.date.onlinefirst
2022-10
-
dc.identifier.articleid
331
-
dc.identifier.eissn
1533-7928
-
dc.description.numberOfPages
36
-
tuw.author.orcid
0000-0002-8496-3909
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
80
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik