<div class="csl-bib-body">
<div class="csl-entry">Heitzinger, C. (2022). Algorithms for and Challenges in the Analysis of Markers in Personalized Health Care. In A. Haslberger (Ed.), <i>Advances in Precision Nutrition, Personalization and Healthy Aging</i> (pp. 203–229). Springer Cham. https://doi.org/10.1007/978-3-031-10153-3_9</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136399
-
dc.description.abstract
Nowadays, the various omics disciplines such as genomics, proteomics, metabolomics, metagenomics, and transcriptomics generate a plethora of data. At the same time, a multitude of omics markers may be accompanied by a multitude of diseases. Hence, finding relationships between omics markers and disease in their early stages is a challenge that is at the very core of predictive or personalized medicine. In this chapter, an overview of algorithms for solving these problems of supervised learning is given, and challenges in this problem domain are discussed. Questions of learnability should be considered, and the quality and precision of the predictions should be assessed critically and quantitatively. Therefore, quality metrics for the assessment of the predictions are discussed as well.
en
dc.language.iso
en
-
dc.subject
Machine learning
en
dc.subject
Supervised learning
en
dc.subject
Bias and variance
en
dc.subject
Overfitting
en
dc.subject
Quality metrics
en
dc.subject
Personalized health care
en
dc.subject
Genetics
en
dc.subject
Epigenetics
en
dc.title
Algorithms for and Challenges in the Analysis of Markers in Personalized Health Care
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.editoraffiliation
University of Vienna, Austria
-
dc.relation.isbn
978-3-031-10153-3
-
dc.relation.doi
10.1007/978-3-031-10153-3
-
dc.description.startpage
203
-
dc.description.endpage
229
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Advances in Precision Nutrition, Personalization and Healthy Aging
-
tuw.relation.publisher
Springer Cham
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-2 - Forschungsgruppe Maschinelles Lernen und Unsicherheitsquantifizierung
-
tuw.publisher.doi
10.1007/978-3-031-10153-3_9
-
dc.description.numberOfPages
27
-
tuw.editor.orcid
0000-0001-9699-537X
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.openairetype
book part
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering