<div class="csl-bib-body">
<div class="csl-entry">Drmota, M. (2022, March 15). <i>Cores and Components in Cubic Planar Maps</i> [Presentation]. Arbeitsgemeinschaft Diskrete Mathematik, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136403
-
dc.description.abstract
It is already a classical result that the largest components (for example connected components or 2-connected components) in random planar maps have linear expected size and the limiting distribution follows an Airy law. This was systematically studied by Banderier, Flajolet, Schaeffer, and Soria (2001) in the context of critical singularity schemes of generating functions.The main purpose of the present work is to extend these techniques to more general situations, in particular to cores and maximal components of random cubic maps, where several additional technical difficulties appear, in the combinatorial as well in the analytic part.
en
dc.language.iso
en
-
dc.subject
Cores and Components
en
dc.title
Cores and Components in Cubic Planar Maps
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Presentation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.event.name
Arbeitsgemeinschaft Diskrete Mathematik
de
tuw.event.startdate
15-03-2022
-
tuw.event.enddate
15-03-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
AT
-
tuw.event.presenter
Drmota, Michael
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie