<div class="csl-bib-body">
<div class="csl-entry">Kapla, D. B., Fertl, L., & Bura, E. (2022). Fusing sufficient dimension reduction with neural networks. <i>Computational Statistics & Data Analysis</i>, <i>168</i>, Article 107390. https://doi.org/10.1016/j.csda.2021.107390</div>
</div>
-
dc.identifier.issn
0167-9473
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136547
-
dc.description.abstract
Neural networks are combined with sufficient dimension reduction methodology in order to remove the limitation of small p and n of the latter. NN-SDR applies when the dependence of the response Y on a set of predictors X is fully captured by the regression function , for an unknown function g and low rank parameter B matrix. It is shown that the proposed estimator is on par with competing sufficient dimension reduction methods, such as minimum average variance estimation and conditional variance estimation, in small p and n settings in simulations. Its main advantage is its scalability in regressions with large data, for which the other methods are infeasible.
en
dc.language.iso
en
-
dc.relation.ispartof
Computational Statistics & Data Analysis
-
dc.subject
Applied Mathematics
en
dc.subject
Computational Mathematics
en
dc.subject
Computational Theory and Mathematics
en
dc.subject
Prediction
en
dc.subject
Regression
en
dc.subject
Large sample size
en
dc.subject
Mean subspace
en
dc.subject
Nonparametric
en
dc.subject
Statistics and Probability
en
dc.title
Fusing sufficient dimension reduction with neural networks
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
168
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
65
-
tuw.researchTopic.value
35
-
dcterms.isPartOf.title
Computational Statistics & Data Analysis
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1016/j.csda.2021.107390
-
dc.date.onlinefirst
2021-11-12
-
dc.identifier.articleid
107390
-
dc.identifier.eissn
1872-7352
-
dc.description.numberOfPages
20
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik