<div class="csl-bib-body">
<div class="csl-entry">Bura, E., Forzani, L., Arancibia, R. G., Llop, P., & Tomassi, D. (2022). Sufficient reductions in regression with mixed predictors. <i>Journal of Machine Learning Research</i>, <i>23</i>(102), 1–47. http://hdl.handle.net/20.500.12708/136548</div>
</div>
-
dc.identifier.issn
1532-4435
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136548
-
dc.description.abstract
Most data sets comprise of measurements on continuous and categorical variables. Yet, modeling high-dimensional mixed predictors has received limited attention in the regression and classification statistical literature. We study the general regression problem of inferring on a variable of interest based on high dimensional mixed continuous and binary predictors. The aim is to find a lower dimensional function of the mixed predictor vector that contains all the modeling information in the mixed predictors for the response, which can be either continuous or categorical. The approach we propose identifies sufficient reductions by reversing the regression and modeling the mixed predictors conditional on the response. We derive the maximum likelihood estimator of the sufficient reductions, asymptotic tests for dimension, and a regularized estimator, which simultaneously achieves variable (feature) selection and dimension reduction (feature extraction). We study the performance of the proposed method and compare it with other approaches through simulations and real data examples.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Machine Learning Research
-
dc.subject
Feature selection
en
dc.subject
Feature extraction
en
dc.subject
High-dimensional
en
dc.subject
Multivariate Bernoulli
en
dc.subject
Regularization
en
dc.title
Sufficient reductions in regression with mixed predictors
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1
-
dc.description.endpage
47
-
dc.type.category
Original Research Article
-
tuw.container.volume
23
-
tuw.container.issue
102
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
60
-
dcterms.isPartOf.title
Journal of Machine Learning Research
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
dc.identifier.eissn
1533-7928
-
dc.description.numberOfPages
47
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik