<div class="csl-bib-body">
<div class="csl-entry">Oezelt, H., Qu, L., Kovacs, A., Fischbacher, J., Gusenbauer, M., Beigelbeck, R., Praetorius, D., Masao, Y., Shoji, T., Kato, A., Chantrell, R., Winklhofer, M., Zimanyi, G., & Schrefl, T. (2022). Full-spin-wave-scaled stochastic micromagnetism for mesh-independent simulations of ferromagnetic resonance and reversal. <i>Npj Computational Materials</i>, <i>8</i>(35). https://doi.org/10.1038/s41524-022-00719-5</div>
</div>
-
dc.identifier.issn
2057-3960
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136658
-
dc.description.abstract
In this paper, we address the problem that standard stochastic Landau-Lifshitz-Gilbert (sLLG) simulations typically produce results that show unphysical mesh-size dependence. The root cause of this problem is that the effects of spin-wave fluctuations are ignored in sLLG. We propose to represent the effect of these fluctuations by a full-spin-wave-scaled stochastic LLG, or FUSSS LLG method. In FUSSS LLG, the intrinsic parameters of the sLLG simulations are first scaled by scaling factors that integrate out the spin- wave fluctuations up to the mesh size, and the sLLG simulation is then performed with these scaled parameters. We developed FUSSS LLG by studying the Ferromagnetic Resonance (FMR) in Nd2Fe14B cubes. The nominal scaling greatly reduced the mesh size dependence relative to sLLG. We then performed three tests and validations of our FUSSS LLG with this modified scaling. (1) We studied the same FMR but with magnetostatic fields included. (2) We simulated the total magnetization of the Nd2Fe14B cube. (3) We studied the effective, temperature- and sweeping rate-dependent coercive field of the cubes. In all three cases, we found that FUSSS LLG delivered essentially mesh-size-independent results, which tracked the theoretical expectations better than unscaled sLLG. Motivated by these successful validations, we propose that FUSSS LLG provides marked, qualitative progress towards accurate, high precision modeling of micromagnetics in hard, permanent magnets.
en
dc.language.iso
en
-
dc.relation.ispartof
npj Computational Materials
-
dc.subject
Computer Science Applications
-
dc.subject
Modeling and Simulation
-
dc.subject
Mechanics of Materials
-
dc.subject
General Materials Science
-
dc.title
Full-spin-wave-scaled stochastic micromagnetism for mesh-independent simulations of ferromagnetic resonance and reversal
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
8
-
tuw.container.issue
35
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
npj Computational Materials
-
tuw.publication.orgunit
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1038/s41524-022-00719-5
-
dc.identifier.eissn
2057-3960
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-8413-1950
-
tuw.author.orcid
0000-0002-0815-5379
-
tuw.author.orcid
0000-0002-1977-9830
-
tuw.author.orcid
0000-0001-5410-5615
-
tuw.author.orcid
0000-0003-1352-9723
-
tuw.author.orcid
0000-0002-0871-0520
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E366 - Institut für Sensor- und Aktuatorsysteme
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E138 - Institut für Festkörperphysik
-
crisitem.author.orcid
0000-0002-1977-9830
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik