<div class="csl-bib-body">
<div class="csl-entry">Ekvall, K. O., & Molstad, A. J. (2022). Mixed-type multivariate response regression with covariance estimation. <i>Statistics in Medicine</i>, <i>41</i>(15), 2768–2785. https://doi.org/10.1002/sim.9383</div>
</div>
-
dc.identifier.issn
0277-6715
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136750
-
dc.description.abstract
We propose a new method for multivariate response regression and covariance estimation when elements of the response vector are of mixed types, for example some continuous and some discrete. Our method is based on a model which assumes the observable mixed-type response vector is connected to a latent multivariate normal response linear regression through a link function. We explore the properties of this model and show its parameters are identifiable under reasonable conditions. We impose no parametric restrictions on the covariance of the latent normal other than positive definiteness, thereby avoiding assumptions about unobservable variables which can be difficult to verify in practice. To accommodate this generality, we propose a novel algorithm for approximate maximum likelihood estimation that works "off-the-shelf" with many different combinations of response types, and which scales well in the dimension of the response vector. Our method typically gives better predictions and parameter estimates than fitting separate models for the different response types and allows for approximate likelihood ratio testing of relevant hypotheses such as independence of responses. The usefulness of the proposed method is illustrated in simulations; and one biomedical and one genomic data example.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Statistics in Medicine
-
dc.subject
Epidemiology
-
dc.subject
Statistics and Probability
-
dc.subject
covariance estimation
-
dc.subject
latent variable models
-
dc.subject
mixed-type response regression
-
dc.subject
multivariateregression
-
dc.title
Mixed-type multivariate response regression with covariance estimation
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
2768
-
dc.description.endpage
2785
-
dc.type.category
Original Research Article
-
tuw.container.volume
41
-
tuw.container.issue
15
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Statistics in Medicine
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
tuw.publisher.doi
10.1002/sim.9383
-
dc.identifier.eissn
1097-0258
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0001-8085-4353
-
tuw.author.orcid
0000-0003-0645-5105
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik