<div class="csl-bib-body">
<div class="csl-entry">Žugec, P., Barbagallo, M., Andrzejewski, J., Perkowski, J., Colonna, N., Bosnar, D., Gawlik, A., Sabaté-Gilarte, M., Bacak, M., Mingrone, F., Chiaveri, E., & n_TOF Collaboration. (2022). Machine learning based event classification for the energy-differential measurement of the <sup>n</sup><sup>a</sup><sup>t</sup>C(n,p) and <sup>n</sup><sup>a</sup><sup>t</sup>C(n,d) reactions. <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i>, <i>1033</i>, Article 166686. https://doi.org/10.1016/j.nima.2022.166686</div>
</div>
-
dc.identifier.issn
0168-9002
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136781
-
dc.description.abstract
The paper explores the feasibility of using machine learning techniques, in particular neural networks, for classification of the experimental data from the joint ⁿᵃᵗC(n,p) and ⁿᵃᵗC(n,d) reaction cross section measurement from the neutron time of flight facility n_TOF at CERN. Each relevant ΔE-E pair of strips from two segmented silicon telescopes is treated separately and afforded its own dedicated neural network. An important part of the procedure is a careful preparation of training datasets, based on the raw data from Geant4 simulations. Instead of using these raw data for the training of neural networks, we divide a relevant 3-parameter space into discrete voxels, classify each voxel according to a particle/reaction type and submit these voxels to a training procedure. The classification capabilities of the structurally optimized and trained neural networks are found to be superior to those of the manually selected cuts.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
-
dc.subject
Instrumentation
en
dc.subject
Nuclear and High Energy Physics
en
dc.subject
Machine learning
en
dc.subject
Silicon telescope
en
dc.subject
Particle recognition
en
dc.subject
Neutron time of flight
en
dc.subject
n_TOF facility
en
dc.title
Machine learning based event classification for the energy-differential measurement of the ⁿᵃᵗC(n,p) and ⁿᵃᵗC(n,d) reactions
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
1033
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M7
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Special and Engineering Materials
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
dcterms.isPartOf.title
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
-
tuw.publication.orgunit
E141-04 - Forschungsbereich Neutron- and Quantum Physics