<div class="csl-bib-body">
<div class="csl-entry">Gaston, B., Casamayor Pujol, V., Lopez-Soriano, S., & Pous, R. (2022). A Metric for Assessing, Comparing, and Predicting the Performance of Autonomous RFID-Based Inventory Robots for Retail. <i>IEEE Transactions on Industrial Electronics</i>, <i>69</i>(10), 10354–10362. https://doi.org/10.1109/tie.2021.3128917</div>
</div>
-
dc.identifier.issn
0278-0046
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136872
-
dc.description.abstract
Radio frequency identification (RFID) technology is being widely adopted by retailers due to its accuracy, versatility, and reduction of operational costs. Most commonly, RFID in retail is used for taking frequent and accurate inventories of items in the stores. Usually, RFID inventories use handheld RFID devices, which makes the task tedious, costly, and prone to human errors. More reliable, fully automatic alternatives exist, such as smart shelves, overhead RFID antennas, and RFID-equipped robots. Among them, robots seem to be the preferred choice by retailers with large stores. However, retailers need an objective way to compare the different options for inventory solutions and to calculate the return on investment of each of them before they make an investment decision. In this article, we present a metric for assessing, comparing, and predicting the performance of autonomous RFID-based robots in retail stores. The metric is based on a theoretical model of both the store and the robot, and predicts the performance of a given robot when inventorying a specific store. The metric also allows to compare the performance of different RFID robots in different stores. The metric has been developed using experimental data and has been validated in a real store.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Industrial Electronics
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Control and Systems Engineering
-
dc.subject
performance
-
dc.subject
inventory
-
dc.subject
measurement
-
dc.subject
metrics
-
dc.subject
Applied robotics
-
dc.subject
radio frequency identification (RFID).
-
dc.title
A Metric for Assessing, Comparing, and Predicting the Performance of Autonomous RFID-Based Inventory Robots for Retail
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Pompeu Fabra University, Spain
-
dc.contributor.affiliation
Pompeu Fabra University, Spain
-
dc.contributor.affiliation
Pompeu Fabra University, Spain
-
dc.description.startpage
10354
-
dc.description.endpage
10362
-
dc.type.category
Original Research Article
-
tuw.container.volume
69
-
tuw.container.issue
10
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Industrial Electronics
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/tie.2021.3128917
-
dc.identifier.eissn
1557-9948
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-1008-7958
-
tuw.author.orcid
0000-0003-2830-8368
-
tuw.author.orcid
0000-0002-1219-7125
-
tuw.author.orcid
0000-0002-1122-5219
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Information Systems Engineering (ISE)
de
wb.facultyfocus
Information Systems Engineering (ISE)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Pompeu Fabra University
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Pompeu Fabra University
-
crisitem.author.dept
Pompeu Fabra University
-
crisitem.author.orcid
0000-0003-2830-8368
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering