<div class="csl-bib-body">
<div class="csl-entry">Auzinger, W., Burdeos, K., Fallahpour, M., Koch, O., Mendoza, R., & Weinmüller, E. (2022). A numerical continuation method for parameter-dependent boundary value problems using bvpsuite 2.0. <i>Journal of Numerical Analysis, Industrial and Applied Mechanics (JNAIAM)</i>, <i>16</i>(1–2), 1–13. http://hdl.handle.net/20.500.12708/136895</div>
</div>
-
dc.identifier.issn
1790-8140
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136895
-
dc.description.abstract
The Matlab package bvpsuite 2.0 is a numerical collocation code for the approximation of solutions of a broad range of boundary value problems in ordinary differential equations.
In this article, its newly implemented pathfollowing module with automated step-length control is presented.
Two versions using the pseudo-arclength continuation method, allowing pathfollowing beyond turning points, were developed,
both taking advantage of the existing features of bvpsuite 2.0 such as error estimation and mesh adaptation.
The first version is based on the Gauss-Newton method. The second version is now contained in the package bvpsuite 2.0 and uses its built-in iterative method,
the Fast Frozen Newton method. Their operating principles are presented and their performance is compared by means of the computation of some pathfollowing problems.
Furthermore, the results of computations with bvpsuite 2.0 for a problem with path bifurcations are presented.
en
dc.language.iso
en
-
dc.publisher
European Society of Computational Methods in Sciences and Engineering
-
dc.relation.ispartof
Journal of Numerical Analysis, Industrial and Applied Mechanics (JNAIAM)
-
dc.subject
numerical continuation
-
dc.subject
boundary value problems
-
dc.subject
step-length control
-
dc.subject
predictor-corrector method
-
dc.title
A numerical continuation method for parameter-dependent boundary value problems using bvpsuite 2.0
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1
-
dc.description.endpage
13
-
dc.type.category
Original Research Article
-
tuw.container.volume
16
-
tuw.container.issue
1-2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Numerical Analysis, Industrial and Applied Mechanics (JNAIAM)
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
dc.identifier.eissn
1790-8159
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-9631-2601
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing