<div class="csl-bib-body">
<div class="csl-entry">Amad, A. A. S., Ledger, P. D., Betcke, T., & Praetorius, D. (2022). Benchmark computations for the polarization tensor characterization of small conducting objects. <i>Applied Mathematical Modelling</i>, <i>111</i>, 94–107. https://doi.org/10.1016/j.apm.2022.06.024</div>
</div>
-
dc.identifier.issn
0307-904X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136896
-
dc.description.abstract
The characterisation of small low conducting inclusions in an otherwise uniform background
from low-frequency electrical field measurements has important applications in medical imaging
using electrical impedance tomography as well as in geological imaging using electrical
resistivity tomography. It is known that such objects can be characterised by a Poyla-Szegö
(polarizability) tensor. Such characterisations have attracted interest as they can provide object
features in a machine learning classification algorithm and provide an alternative imaging
solution. However, to be able train machine learning algorithms, large dictionaries are required
and it is essential that the characterisations are accurate. In this work, we obtain accurate
numerical approximations to the tensor coefficients, by applying an adaptive boundary element
method. The goal being to provide a sequence of benchmark computations for the tensor
coefficients to allow other software developers check the accuracy of their codes.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCIENCE INC
-
dc.relation.ispartof
Applied Mathematical Modelling
-
dc.subject
Applied Mathematics
-
dc.subject
Modeling and Simulation
-
dc.title
Benchmark computations for the polarization tensor characterization of small conducting objects
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Swansea University, UK
-
dc.contributor.affiliation
Keele University, UK
-
dc.contributor.affiliation
University College London
-
dc.description.startpage
94
-
dc.description.endpage
107
-
dc.type.category
Original Research Article
-
tuw.container.volume
111
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Applied Mathematical Modelling
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1016/j.apm.2022.06.024
-
dc.identifier.eissn
1872-8480
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0002-3323-2110
-
tuw.author.orcid
0000-0002-1977-9830
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairetype
research article
-
crisitem.author.dept
Swansea University, UK
-
crisitem.author.dept
Keele University, UK
-
crisitem.author.dept
University College London
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing