<div class="csl-bib-body">
<div class="csl-entry">Di Fratta, G., Jüngel, A., Praetorius, D., & Slastikov, V. (2023). Spin-diffusion model for micromagnetics in the limit of long times. <i>Journal of Differential Equations</i>, <i>343</i>, 467–494. https://doi.org/10.1016/j.jde.2022.10.012</div>
</div>
-
dc.identifier.issn
0022-0396
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136934
-
dc.description.abstract
In this paper, we consider spin-diffusion Landau–Lifshitz–Gilbert equations (SDLLG), which consist of the time-dependent Landau–Lifshitz–Gilbert (LLG) equation coupled with a time-dependent diffusion equation for the electron spin accumulation. The model takes into account the diffusion process of the spin accumulation in the magnetization dynamics of ferromagnetic multilayers. We prove that in the limit of long times, the system reduces to simpler equations in which the LLG equation is coupled to a nonlinear and nonlocal steady-state equation, referred to as SLLG. As a by-product, the existence of global weak solutions to the SLLG equation is obtained. Moreover, we prove weak-strong uniqueness of solutions of SLLG, i.e., all weak solutions coincide with the (unique) strong solution as long as the latter exists in time. The results provide a solid mathematical ground to the qualitative behavior originally predicted by ZHANG, LEVY, and FERT in [44] in ferromagnetic multilayers.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Differential Equations
-
dc.subject
Asymptotic analysis
en
dc.subject
Existence of solutions
en
dc.subject
Landau–Lifshitz–Gilbert equation
en
dc.subject
Micromagnetics
en
dc.subject
Spin diffusion
en
dc.subject
Weak-strong uniqueness
en
dc.title
Spin-diffusion model for micromagnetics in the limit of long times