<div class="csl-bib-body">
<div class="csl-entry">Kanitschar, F. P. (2022, August 30). <i>Finite-Size Security Proof for Discrete-Modulated Continuous-Variable Quantum Key Distribution</i> [Poster Presentation]. QCrypt 2022, Taipeh, Taiwan (Province of China).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/136985
-
dc.description.abstract
Discrete-Modulated (DM) Continuous-Variable Quantum Key Distribution (CV-QKD) protocols are a promising candidates for commercial implementations of quantum communication networks due to their experimental simplicity. While tight security analyses in the asymptotic limit exist, proofs in the finite-size regime are still subject to active research. We present a composable finite-size security proof against independently and identically distributed (i.i.d.) collective attacks for a general DM CV-QKD protocol. We introduce a new energy testing theorem to bound the dimension of Bob's system and rigorously prove composable security. We introduce and build up our security argument on so-called acceptance testing which, as we argue, is the proper notion for the statistical analysis in the finite-size regime and replaces the concept of parameter estimation for asymptotic security analyses. Finally, we extend and apply a numerical security proof technique to calculate tight lower bounds on the secure key rate. To demonstrate our method, we apply it to a four-state phase-shift keying protocol, both for untrusted, ideal and trusted non-ideal detectors.
en
dc.language.iso
en
-
dc.subject
QKD
en
dc.subject
Quantum Key Distribution
en
dc.subject
Quantum Communication
en
dc.title
Finite-Size Security Proof for Discrete-Modulated Continuous-Variable Quantum Key Distribution
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Poster Presentation
-
tuw.researchTopic.id
Q3
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.id
Q5
-
tuw.researchTopic.name
Quantum Modeling and Simulation
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.name
Design and Engineering of Quantum Systems
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
tuw.linking
https://2022.qcrypt.net/
-
tuw.linking
Liste der akzeptierten Poste: https://2022.qcrypt.net/accepted-papers/#list-of-accepted-posters
-
tuw.publication.orgunit
E141-08 - Forschungsbereich Quantum Optics and Quantum Information