<div class="csl-bib-body">
<div class="csl-entry">Hinterer, F., Schneider, M. A., Hubmer, S., Lopez Martinez, M., Zelger, P., Jesacher, A., Ramlau, R., & Schütz, G. (2022). Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy. <i>PLoS ONE</i>, <i>17</i>(2), Article e0263500. https://doi.org/10.1371/journal.pone.0263500</div>
</div>
-
dc.identifier.issn
1932-6203
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137009
-
dc.description.abstract
Single molecule localization microscopy (SMLM) has the potential to resolve structural details of biological samples at the nanometer length scale. Compared to room temperature experiments, SMLM performed under cryogenic temperature achieves higher photon yields and, hence, higher localization precision. However, to fully exploit the resolution it is crucial to account for the anisotropic emission characteristics of fluorescence dipole emitters with fixed orientation. In case of slight residual defocus, localization estimates may well be biased by tens of nanometers. We show here that astigmatic imaging in combination with information about the dipole orientation allows to extract the position of the dipole emitters without localization bias and down to a precision of 1 nm, thereby reaching the corresponding Cramér Rao bound. The approach is showcased with simulated data for various dipole orientations, and parameter settings realistic for real life experiments.
en
dc.language.iso
en
-
dc.publisher
PUBLIC LIBRARY SCIENCE
-
dc.relation.ispartof
PLoS ONE
-
dc.subject
Algorithms
en
dc.subject
Biological Phenomena
en
dc.subject
Cold Temperature
en
dc.subject
Fluorescence
en
dc.subject
Likelihood Functions
en
dc.subject
Microscopy
en
dc.subject
Microscopy, Fluorescence
en
dc.subject
Normal Distribution
en
dc.subject
Photons
en
dc.subject
Probability
en
dc.subject
Reproducibility of Results
en
dc.subject
Single Molecule Imaging
en
dc.subject
Temperature
en
dc.title
Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy