<div class="csl-bib-body">
<div class="csl-entry">Mischek, F., & Musliu, N. (2022). Reinforcement Learning for Cross-Domain Hyper-Heuristics. In L. De Raedt (Ed.), <i>Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)</i> (pp. 4793–4799). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/664</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137031
-
dc.description.abstract
In this paper, we propose a new hyper-heuristic approach that uses reinforcement learning to automatically learn the selection of low-level heuristics across a wide range of problem domains. We provide a detailed analysis and evaluation of the algorithm components, including different ways to represent the hyper-heuristic state space and reset strategies to avoid unpromising areas of the solution space. Our methods have been evaluated using HyFlex, a well-known benchmarking framework for cross-domain hyper-heuristics, and compared with state-of-the-art approaches. The experimental evaluation shows that our reinforcement-learning based approach produces results that are competitive with the state-of-the-art, including the top participants of the Cross Domain Hyper-heuristic Search Competition 2011.
en
dc.language.iso
en
-
dc.subject
Hyper-heuristics
en
dc.subject
Reinforcement learning
en
dc.subject
Combinatorial Optimization
en
dc.title
Reinforcement Learning for Cross-Domain Hyper-Heuristics
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Örebro University; KU Leuven
-
dc.relation.isbn
978-1-956792-00-3
-
dc.relation.doi
10.24963/ijcai.2022
-
dc.description.startpage
4793
-
dc.description.endpage
4799
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
International Joint Conferences on Artificial Intelligence
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.24963/ijcai.2022/664
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0003-1166-3881
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.editor.orcid
0000-0002-6860-6303
-
tuw.event.name
IJCAI-ECAI 2022, THE 31ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
en
tuw.event.startdate
23-07-2022
-
tuw.event.enddate
29-07-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vienna
-
tuw.event.country
AT
-
tuw.event.presenter
Mischek, Florian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence