<div class="csl-bib-body">
<div class="csl-entry">Fabian, T., Kausel, M., Linhart, L., Burgdörfer, J., & Libisch, F. (2022). Half-integer Wannier diagram and Brown-Zak fermions of graphene on hexagonal boron nitride. <i>Physical Review B</i>, <i>106</i>(16), Article 165412. https://doi.org/10.34726/3143</div>
</div>
-
dc.identifier.issn
2469-9950
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137053
-
dc.identifier.uri
https://doi.org/10.34726/3143
-
dc.description.abstract
The moiré potential of graphene on hexagonal boron nitride (hBN) generates a supercell sufficiently large as to thread a full magnetic flux quantum φ₀ for experimentally accessible magnetic field strengths. Close to rational fractions of φ₀, 𝘱/𝘲·φ₀, magnetotranslation invariance is restored giving rise to Brown-Zak fermions featuring the same dispersion relation as in the absence of the field. Employing a highly efficient numerical approach we simulate the magnetoconductance of bulk graphene on hexagonal boron nitride. The resulting Hofstadter butterfly is analyzed in terms of a novel half-integer Wannier diagram for Landau spectra of Dirac particles. This complex diagram can account for many features observed in the simulation and in experiment on a single-particle level, such as spin and valley degeneracy lifting and a nonperiodicidy in φ₀.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
American Physical Society (APS)
-
dc.relation.ispartof
Physical Review B
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
graphene
en
dc.subject
Hofstadter butterfly
en
dc.subject
moiré
en
dc.title
Half-integer Wannier diagram and Brown-Zak fermions of graphene on hexagonal boron nitride