<div class="csl-bib-body">
<div class="csl-entry">Rieder, A., Sayas, F.-J., & Melenk, J. M. (2021). Runge-Kutta approximation for C₀-semigroups in the graph norm with applications to time domain boundary integral equations. <i>Partial Differential Equations and Applications</i>, <i>1</i>(6), Article 49. https://doi.org/10.1007/s42985-020-00051-x</div>
</div>
-
dc.identifier.issn
2662-2963
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137419
-
dc.description.abstract
We consider the approximation to an abstract evolution problem with inhomogeneous side constraint using A-stable Runge-Kutta methods. We derive a priori estimates in norms other than the underlying Banach space. Most notably, we derive estimates in the graph norm of the generator. These results are used to study convolution quadrature based discretizations of a wave scattering and a heat conduction
problem.
en
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Partial Differential Equations and Applications
-
dc.title
Runge-Kutta approximation for C₀-semigroups in the graph norm with applications to time domain boundary integral equations
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Delaware, United States of America (the)