<div class="csl-bib-body">
<div class="csl-entry">Gallina, V., Lingitz, L., Breitschopf, J., Zudor, E., & Sihn, W. (2021). Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network. In J. Vancza & P. Maropoulos (Eds.), <i>0th CIRP Sponsored Conference on Digital Enterprise Technologies (DET 2020) – Digital Technologies as Enablers of Industrial Competitiveness and Sustainability</i> (pp. 136–141). Elsevier BV. https://doi.org/10.1016/j.promfg.2021.07.047</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137746
-
dc.description.abstract
Since the reliability of production plans drops largely within several days after plan creation, production control faces huge challenges, when trying to foresee the work in progress (WIP) level at bottleneck machines and trying to react appropriately. Whereas several researchers applied artificial intelligence to predict lead times or transition times to improve the planning reliability, only small efforts have been taken on time series prediction in the field of production control, especially on the topic WIP prediction. In this paper univarate times series approaches are used for predicting the work in progress for a bottleneck machine for one and more step ahead. Long short-term memory recurrent neural networks, LSMT models show higher accuracy than classical methods. For more step ahead forecasting four different approaches are investigated. System
en
dc.relation.ispartofseries
Procedia Manufacturing
-
dc.subject
Artificial Intelligence
-
dc.subject
prediction
-
dc.subject
time series
-
dc.subject
LSTM
-
dc.subject
Industrial and Manufacturing Engineering
-
dc.subject
capacity planning
-
dc.subject
WIP
-
dc.title
Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
0th CIRP Sponsored Conference on Digital Enterprise Technologies (DET 2020) – Digital Technologies as Enablers of Industrial Competitiveness and Sustainability
-
dc.contributor.affiliation
Fraunhofer Austria Research GmbH
-
dc.description.startpage
136
-
dc.description.endpage
141
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
0th CIRP Sponsored Conference on Digital Enterprise Technologies (DET 2020) – Digital Technologies as Enablers of Industrial Competitiveness and Sustainability
-
tuw.container.volume
54
-
tuw.relation.publisher
Elsevier BV
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E330-02 - Forschungsbereich Betriebstechnik, Systemplanung und Facility Management
-
tuw.publisher.doi
10.1016/j.promfg.2021.07.047
-
dc.description.numberOfPages
6
-
tuw.event.name
10th CIRP Sponsored Conference on Digital Enterprise Technologies (DET 2020)
-
tuw.event.startdate
12-10-2020
-
tuw.event.enddate
14-10-2020
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Budapest
-
tuw.event.country
HU
-
tuw.event.presenter
Gallina, Viola
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Produktionssysteme und Industrial Management
de
wb.facultyfocus
Produktionssysteme und Industrial Management
en
wb.facultyfocus.faculty
E300
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E141 - Atominstitut
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften