<div class="csl-bib-body">
<div class="csl-entry">Zhang, Z., Xu, X., Chen, P., Wu, X., Xu, X., Wang, G., & Dustdar, S. (2021). A novel nonlinear causal inference approach using vector‐based belief rule base. <i>International Journal of Intelligent Systems</i>, <i>36</i>(9), 5005–5027. https://doi.org/10.1002/int.22500</div>
</div>
-
dc.identifier.issn
0884-8173
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/137778
-
dc.description.abstract
When using the belief rule base (BRB) methodology to deal with the nonlinear causal inference problems, combinatorial explosion often occurs due to overnumbered antecedent attributes, resulting in poor performance. Therefore, this paper proposes a novel nonlinear causal inference approach based on vector-based BRB. In the modeling process of BRB, the original attributes are ranked by contribution rate and transformed into attribute vectors. Meanwhile, combined with the k-means method, appropriate referential vectors are obtained. Thereby a vector-based BRB can be established. In the inference process of BRB, the idea of full activation of vector-based rules is presented. By calculating the spatial matching degree of the testing sample and the referential vectors, activation weights of the rules which are used in the evidential reasoning algorithm are acquired. Experimental results of a nonlinear function with four-dimensional input and the pipeline leakage detection data show the effectiveness and superiority of the proposed approach.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
International Journal of Intelligent Systems
-
dc.subject
Software
-
dc.subject
Artificial Intelligence
-
dc.subject
Theoretical Computer Science
-
dc.subject
Human-Computer Interaction
-
dc.subject
attribute vector matching
-
dc.subject
evidential reasoning
-
dc.subject
full activation
-
dc.subject
nonlinear causal inference
-
dc.subject
vector‐
-
dc.subject
based belief rule base
-
dc.title
A novel nonlinear causal inference approach using vector‐based belief rule base
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Hangzhou Dianzi University, China
-
dc.description.startpage
5005
-
dc.description.endpage
5027
-
dc.type.category
Original Research Article
-
tuw.container.volume
36
-
tuw.container.issue
9
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
International Journal of Intelligent Systems
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1002/int.22500
-
dc.identifier.eissn
1098-111X
-
dc.description.numberOfPages
23
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Information Systems Engineering (ISE)
de
wb.facultyfocus
Information Systems Engineering (ISE)
en
wb.facultyfocus.faculty
E180
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
Hangzhou Dianzi University
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering