<div class="csl-bib-body">
<div class="csl-entry">Danczul, T., & Schöberl, J. (2021). A reduced basis method for fractional diffusion operators II. <i>Journal of Numerical Mathematics</i>, <i>29</i>(4), 269–287. https://doi.org/10.1515/jnma-2020-0042</div>
</div>
-
dc.identifier.issn
1570-2820
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138274
-
dc.description.abstract
We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛-sf to fractional PDEs involving elliptic operators. Reinterpreting 𝓛-s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously.
A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.
en
dc.relation.ispartof
Journal of Numerical Mathematics
-
dc.subject
Computational Mathematics
-
dc.title
A reduced basis method for fractional diffusion operators II
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
269
-
dc.description.endpage
287
-
dc.type.category
Original Research Article
-
tuw.container.volume
29
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
dcterms.isPartOf.title
Journal of Numerical Mathematics
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1515/jnma-2020-0042
-
dc.identifier.eissn
1569-3953
-
dc.description.numberOfPages
19
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing