<div class="csl-bib-body">
<div class="csl-entry">Baaz, M., & Lolic, A. (2021). Towards a proof theory for Henkin quantifiers. <i>Journal of Logic and Computation</i>, <i>31</i>(1), 40–66. https://doi.org/10.1093/logcom/exaa071</div>
</div>
-
dc.identifier.issn
0955-792X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138402
-
dc.description.abstract
This paper presents a methodology to construct globally sound but possibly locally unsound analytic calculi for partial theories of Henkin quantifiers. It is demonstrated that usual locally sound analytic calculi do not exist for any reasonable fragment of the full theory of Henkin quantifiers. This is due to the combination of strong and weak quantifier inferences in one quantifier rule.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
Journal of Logic and Computation
-
dc.subject
Software
-
dc.subject
Theoretical Computer Science
-
dc.subject
Hardware and Architecture
-
dc.subject
Logic
-
dc.subject
Arts and Humanities (miscellaneous)
-
dc.title
Towards a proof theory for Henkin quantifiers
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
40
-
dc.description.endpage
66
-
dc.type.category
Original Research Article
-
tuw.container.volume
31
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Logic and Computation
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1093/logcom/exaa071
-
dc.identifier.eissn
1465-363X
-
dc.description.numberOfPages
27
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie