<div class="csl-bib-body">
<div class="csl-entry">Neunteufel, M., Pechstein, A. S., & Schöberl, J. (2021). Three-field mixed finite element methods for nonlinear elasticity. <i>Computer Methods in Applied Mechanics and Engineering</i>, <i>382</i>, Article 113857. https://doi.org/10.1016/j.cma.2021.113857</div>
</div>
-
dc.identifier.issn
0045-7825
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138461
-
dc.description.abstract
In this paper, we extend the tangential-displacement normal-normal-stress continuous (TDNNS) method from Pechstein and Schöberl (2011) to nonlinear elasticity. By means of the Hu-Washizu principle, the distributional derivatives of the displacement vector are lifted to a regular strain tensor. We introduce three different methods, where either the deformation gradient, the Cauchy-Green strain tensor, or both of them are used as independent variables. Within the linear sub-problems, all stress and strain variables can be locally eliminated leading to an equation system in displacement variables, only. The good performance and accuracy of the presented methods are demonstrated by means of several numerical examples.
en
dc.language.iso
en
-
dc.relation.ispartof
Computer Methods in Applied Mechanics and Engineering
-
dc.subject
Computer Science Applications
-
dc.subject
Mechanical Engineering
-
dc.subject
Mechanics of Materials
-
dc.subject
General Physics and Astronomy
-
dc.subject
Computational Mechanics
-
dc.title
Three-field mixed finite element methods for nonlinear elasticity
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Johannes Kepler University of Linz, Austria
-
dc.type.category
Original Research Article
-
tuw.container.volume
382
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
dcterms.isPartOf.title
Computer Methods in Applied Mechanics and Engineering
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1016/j.cma.2021.113857
-
dc.identifier.articleid
113857
-
dc.identifier.eissn
1879-2138
-
dc.description.numberOfPages
28
-
tuw.author.orcid
0000-0002-7039-387X
-
tuw.author.orcid
0000-0002-1948-9753
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
research article
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
Johannes Kepler University of Linz
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-7039-387X
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing