<div class="csl-bib-body">
<div class="csl-entry">Baumann, P., & Sturm, K. (2021). Adjoint-based methods to compute higher-order topological derivatives with an application to elasticity. <i>Engineering Computations</i>, <i>39</i>(1), 60–114. https://doi.org/10.1108/ec-07-2021-0407</div>
</div>
-
dc.identifier.issn
0264-4401
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138664
-
dc.description.abstract
Purpose - The goal of this paper is to give a comprehensive and short review on how to compute the first- and second-order topological derivatives and potentially higher-order topological derivatives for partial differential equation (PDE) constrained shape functionals.
Design/methodology/approach - The authors employ the adjoint and averaged adjoint variable within the Lagrangian framework and compare three different adjoint-based methods to compute higher-order
topological derivatives. To illustrate the methodology proposed in this paper, the authors then apply the methods to a linear elasticity model.
Findings - The authors compute the first- and second-order topological derivatives of the linear elasticity model for various shape functionals in dimension two and three using Amstutz' method, the averaged adjoint method and Delfour's method.
Originality/value - In contrast to other contributions regarding this subject, the authors not only compute the first- and second-order topological derivatives, but additionally give some insight on various methods and compare their applicability and efficiency with respect to the underlying problem formulation.
en
dc.language.iso
en
-
dc.relation.ispartof
Engineering Computations
-
dc.subject
Computer Science Applications
-
dc.subject
Software
-
dc.subject
General Engineering
-
dc.subject
Computational Theory and Mathematics
-
dc.subject
Elasticity
-
dc.subject
Topological derivative
-
dc.subject
Topology optimisation
-
dc.title
Adjoint-based methods to compute higher-order topological derivatives with an application to elasticity
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
60
-
dc.description.endpage
114
-
dc.type.category
Original Research Article
-
tuw.container.volume
39
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Engineering Computations
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1108/ec-07-2021-0407
-
dc.identifier.eissn
1758-7077
-
dc.description.numberOfPages
55
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
crisitem.author.dept
E101-02 - Forschungsbereich Numerik
-
crisitem.author.dept
E101-02 - Forschungsbereich Numerik
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing