<div class="csl-bib-body">
<div class="csl-entry">Glutsyuk, A., Izmestiev, I., & Tabachnikov, S. (2021). Four equivalent properties of integrable billiards. <i>Israel Journal of Mathematics</i>, <i>241</i>(2), 693–719. https://doi.org/10.1007/s11856-021-2110-8</div>
</div>
-
dc.identifier.issn
0021-2172
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/138742
-
dc.description.abstract
By a classical result of Darboux, a foliation of a Riemannian surface has the Graves property (also known as the strong evolution property) if and only if the foliation comes from a Liouville net. A similar result of Blaschke says that a pair of orthogonal foliations has the Ivory property if and only if they form a Liouville net.
Let us say that a strictly geodesically convex curve on a Riemannian surface has the Poritsky property if it can be parametrized in such a way that all of its string diffeomorphisms are shifts with respect to this parameter. In 1950, Poritsky has shown that the only closed plane curves with this property are ellipses.
In the present article we show that a curve on a Riemannian surface has the Poritsky property if and only if it is a coordinate curve of a Liouville net. We also recall Blaschke’s derivation of the Liouville property from the Ivory property and his proof of Weihnacht’s theorem: the only Liouville nets in the plane are nets of confocal conics and their degenerations.
This suggests the following generalization of Birkhoff’s conjecture: If an interior neighborhood of a closed strictly geodesically convex curve on a Riemannian surface is foliated by billiard caustics, then the metric in the neighborhood is Liouville, and the curve is one of the coordinate lines.
en
dc.language.iso
en
-
dc.publisher
HEBREW UNIV MAGNES PRESS
-
dc.relation.ispartof
Israel Journal of Mathematics
-
dc.subject
General Mathematics
en
dc.title
Four equivalent properties of integrable billiards
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
693
-
dc.description.endpage
719
-
dc.type.category
Original Research Article
-
tuw.container.volume
241
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Israel Journal of Mathematics
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.1007/s11856-021-2110-8
-
dc.identifier.eissn
1565-8511
-
dc.description.numberOfPages
27
-
tuw.author.orcid
0000-0003-3173-7841
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Pennsylvania State University
-
crisitem.author.orcid
0000-0003-3173-7841
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie